direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Es gibt keine deutsche Übersetzung dieser Webseite.

Distributed Systems

Almost every computing system nowadays is distributed, ranging from multi-core laptops to Internet-scale services; understanding the principles of distributed computing is hence important for the design and engineering of modern computing systems.  Fundamental issues that arise in reliable and efficient distributed systems include developing adequate methods for modeling failures and synchrony assumptions, determining precise performance bounds on implementations of concurrent data structures, capturing the trade-off between consistency and efficiency, and demarcating the frontier of feasibility in distributed computing.

For example, popular Internet services and applications such as CNN.com, YouTube, Facebook, Skype, BitTorrent attract millions of users every day, and only by the effective load-balancing and collaboration of many thousand machines, an acceptable Quality-of-Service/Quality-of-Experience can be guaranteed. While distributed systems promise a good scalability as well as a high robustness, they pose challenging research problems, such as: How to design robust and scalable distributed architectures and services? How to coordinate access to a shared resource, e.g., by electing a leader? Or how to provide incentives for cooperation in an open, collaborative distributed system?

People

Selected Publications

PeerReview: Practical Accountability for Distributed Systems
Zitatschlüssel HKD-PPADS-07
Autor Haeberlen, Andreas and Kouznetsov, Petr and Druschel, Peter
Buchtitel 21st ACM Symposium on Operating Systems Principles (SOSP 2007)
Seiten 175–188
Jahr 2007
ISBN 978-1-59593-591-5
DOI http://dx.doi.org/10.1145/1294261.1294279
Ort Stevenson, Washington, USA
Monat October
Zusammenfassung We describe PeerReview, a system that provides accountability in distributed systems. PeerReview ensures that Byzantine faults whose effects are observed by a correct node are eventually detected and irrefutably linked to a faulty node. At the same time, PeerReview ensures that a correct node can always defend itself against false accusations. These guarantees are particularly important for systems that span multiple administrative domains, which may not trust each other.PeerReview works by maintaining a secure record of the messages sent and received by each node. The record isused to automatically detect when a node's behavior deviates from that of a given reference implementation, thus exposing faulty nodes. PeerReview is widely applicable: it only requires that a correct node's actions are deterministic, that nodes can sign messages, and that each node is periodically checked by a correct node. We demonstrate that PeerReview is practical by applying it to three different types of distributed systems: a network filesystem, a peer-to-peer system, and an overlay multicast system.
Link zur Publikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe