direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Es gibt keine deutsche Übersetzung dieser Webseite.

Distributed Systems

Almost every computing system nowadays is distributed, ranging from multi-core laptops to Internet-scale services; understanding the principles of distributed computing is hence important for the design and engineering of modern computing systems.  Fundamental issues that arise in reliable and efficient distributed systems include developing adequate methods for modeling failures and synchrony assumptions, determining precise performance bounds on implementations of concurrent data structures, capturing the trade-off between consistency and efficiency, and demarcating the frontier of feasibility in distributed computing.

For example, popular Internet services and applications such as CNN.com, YouTube, Facebook, Skype, BitTorrent attract millions of users every day, and only by the effective load-balancing and collaboration of many thousand machines, an acceptable Quality-of-Service/Quality-of-Experience can be guaranteed. While distributed systems promise a good scalability as well as a high robustness, they pose challenging research problems, such as: How to design robust and scalable distributed architectures and services? How to coordinate access to a shared resource, e.g., by electing a leader? Or how to provide incentives for cooperation in an open, collaborative distributed system?

People

  • Srivatsan Ravi [1]
  • Stefan Schmid

Selected Publications

On the Topologies Formed by Selfish Peers
Zitatschlüssel MSW-OTTFBSP-06
Autor Moscibroda, Thomas and Schmid, Stefan and Wattenhofer, Roger
Buchtitel 25th Annual Symposium on Principles of Distributed Computing (PODC)
Seiten 133–142
Jahr 2006
ISBN 1-59593-384-0
DOI http://dx.doi.org/10.1145/1146381.1146403
Ort Denver, Colorado, USA
Monat July
Zusammenfassung Current peer-to-peer (P2P) systems often suffer from a large fraction of freeriders not contributing any resources to the network. Various mechanisms have been designed to overcome this problem. However, the selfish behavior of peers has aspects which go beyond resource sharing. This paper studies the effects on the topology of a P2P network if peers selfishly select the peers to connect to. In our model, a peer exploits locality properties in order to minimize the latency (or response times) of its lookup operations. At the same time, the peer aims at not having to maintain links to too many other peers in the system. We show that the resulting topologies can be much worse than if peers collaborated. Moreover, the network may never stabilize, even in the absence of churn.
Link zur Publikation [2] Download Bibtex Eintrag [3]
------ Links: ------

Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe

Copyright TU Berlin 2008