direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Es gibt keine deutsche Übersetzung dieser Webseite.

Marco Caninis's Publications

Time Complexity of Distributed Topological Self-Stabilization: The Case of Graph Linearization
Zitatschlüssel GJRSST-TCDTSSCGL-10
Autor Gall, Dominik and Jacob, Riko and Richa, Andréa and Scheideler, Christian and Schmid, Stefan and Täubig, Hanjo
Buchtitel Proceedings of 9th Latin American Theoretical Informatics Symposium (LATIN '10)
Seiten 294–305
Jahr 2010
ISBN 978-3-642-12199-9
ISSN 0302-9743
DOI http://dx.doi.org/10.1007/978-3-642-12200-2_27
Ort Oaxaca, Mexico
Adresse Berlin / Heidelberg, Germany
Jahrgang 6034
Monat April
Verlag Springer
Serie Lecture Notes in Computer Science (LNCS)
Zusammenfassung Topological self-stabilization is an important concept to build robust open distributed systems (such as peer-to-peer systems) where nodes can organize themselves into meaningful network topologies. The goal is to devise distributed algorithms that converge quickly to such a desirable topology, independently of the initial network state. This paper proposes a new model to study the parallel convergence time. Our model sheds light on the achievable parallelism by avoiding bottlenecks of existing models that can yield a distorted picture. As a case study, we consider local graph linearization–i.e., how to build a sorted list of the nodes of a connected graph in a distributed and self-stabilizing manner. We propose two variants of a simple algorithm, and provide an extensive formal analysis of their worst-case and best-case parallel time complexities, as well as their performance under a greedy selection of the actions to be executed.
Link zur Publikation Download Bibtex Eintrag

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe