direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Peer-to-Peer Computing

Peer-to-peer computing is an interesting networking paradigm as it offers a high degree of scalability by exploiting the resources of the participants and avoids single-points of failures. Due to these desirable properties, peer-to-peer computing plays a crucial role in many networking applications beyond file-sharing, and the underlying ideas are also discussed as a design principle for the future Internet. Our research is concerned with the question of whether peer-to-peer is mature enough to step outside its "comfort zone". We conduct measurements of state-of-the-art peer-to-peer networks such as Kad and investigate the robustness, e.g., to Sybil attacks or selfish behavior. For example, we implemented the proof-of-concept BitTorrent client "BitThief [1]" which provides evidence that despite the tit-for-tat incentive mechanism, free-riding is possible in BitTorrent. We develop algorithms to improve the performance of peer-to-peer systems: we devise peer-to-peer networks which are robust to worst-case churn (see e.g., our IPTPS paper), which allow for efficient joins and leaves (see e.g., our SHELL system at ICALP), or which are robust to denial of service attacks (see e.g., our Chameleon system at SPAA). Some of these algorithms were successfully implemented in the online storage tool Wuala and the streaming tool Streamforge, two Swiss startups.

People

  • Stefan Schmid [2]

Selected Publications

A Polylogarithmic Time Algorithm for Distributed Self-Stabilizing Skip Graphs
Citation key JRSST-PTADSSG-09
Author Jacob, Riko and Richa, Andréa and Scheideler, Christian and Schmid, Stefan and Täubig, Hanjo
Title of Book 28th ACM Symposium on Principles of Distributed Computing (PODC)
Pages 131–140
Year 2009
ISBN 978-1-60558-396-9
DOI http://dx.doi.org/10.1145/1582716.1582741
Location Calgary, Alberta, Canada
Month August
Abstract Peer-to-peer systems rely on scalable overlay networks that enable efficient routing between its members. Hypercubic topologies facilitate such operations while each node only needs to connect to a small number of other nodes. In contrast to static communication networks, peer-to-peer networks allow nodes to adapt their neighbor set over time in order to react to join and leave events and failures. This paper shows how to maintain such networks in a robust manner. Concretely, we present a distributed and self-stabilizing algorithm that constructs a (variant of the) skip graph in polylogarithmic time from any initial state in which the overlay network is still weakly connected. This is an exponential improvement compared to previously known self-stabilizing algorithms for overlay networks. In addition, individual joins and leaves are handled locally and require little work.
Link to publication [3] Download Bibtex entry [4]
------ Links: ------

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

Copyright TU Berlin 2008