
Stefan Schmid @ T-Labs, 2011

Network Algorithms

Leader Election

Motivation

Reasons for electing a leader?

Reasons for not electing a leader?

Stefan Schmid @ T-Labs Berlin, 2013/4 2

Leader Election
Nodes in network agree on exactly one leader.

All other nodes are followers.

Motivation

Reasons for electing a leader?

– Once elected, coordination tasks may

 become simpler

– For example: wireless medium access

 (break symmetry)

Reasons for not electing a leader?

– Reduced parallelism?

– Self-stabilization needed: re-election when leader „dies“

– Leader bottleneck / single point of failure?

3 Stefan Schmid @ T-Labs Berlin, 2013/4

How to elect a leader in a ring?

4 Stefan Schmid @ T-Labs Berlin, 2013/4

Model „Synchronous Local Algorithm“: Round

... compute.

... receive...

Send...

5 Stefan Schmid @ T-Labs Berlin, 2013/4

Anonymous Ring

Anonymous System
Anonymous nodes do not have identifiers.

Theorem
In an anonymous ring, leader election is impossible!

Why?

6 Stefan Schmid @ T-Labs Berlin, 2013/4

Impossibility in Synchronous Ring

Theorem

In an anonymous ring, leader election is impossible!

First, note the following lemma:

Lemma

After round k of any deterministic algorithm on an anonymous ring,

each node is in the same state sk.

Proof idea?!

By induction: all nodes start in same state, and each round consists of

sending, receiving and performing local computations. All nodes send

the same messages, receive the same messages, and do the same computations.

So they always stay in same state...
QED

So when a node decides to become a leader, then all others do too.

7 Stefan Schmid @ T-Labs Berlin, 2013/4

Discussion

What is the basic problem?

Symmetry.... How could it be broken?

- How to elect a leader in a star?

- Randomization?

- What if nodes have IDs?

8 Stefan Schmid @ T-Labs Berlin, 2013/4

Asynchronous Ring

Let‘s assume:

- non-anonymous nodes with unique IDs

- asynchronous ring (asyn start and transmissions)

- uniform ring: n unknown!

- no message losses etc.

How to elect a leader now?

Uniform System
Nodes do not know n.

9 Stefan Schmid @ T-Labs Berlin, 2013/4

Asynchronous Ring

Let‘s assume:

- non-anonymous nodes with unique IDs

- asynchronous ring

each node v does the following:

– v sends a message with its ID v to clockwise neighbor

 (unless v already received a message with ID w>v)

– if v receives message w with w>v then

• v forwards w to clockwise neighbor

• v decides not to be the leader

– else if v receives its own ID v then

• v decides to be the leader

Algorithm Clockwise

How to evaluate?

Criteria?

Asynchronous time?!

10 Stefan Schmid @ T-Labs Berlin, 2013/4

Evaluation

Time Complexity
Number of rounds. For asynchronous, assume

max delay of one unit (of course no bound

known to nodes).

Message Complexity
Number of messages sent.

„Local Complexity“
Local computations...

For our algorithm?!

11 Stefan Schmid @ T-Labs Berlin, 2013/4

Clockwise Algorithm

Theorem

Algo is correct, time complexity O(n),

message complexity O(n2).

Proof idea?

Correctness: Let z be max ID. No other node can swallow z‘s ID, so z will get

the message back. So z becomes leader. Every other node declares non-leader when

forwarding z (the latest!).

Message complexity: Each node forwards at most n messages (n IDs in total).

Time complexity: Message circles around cycle (depending on model, at most twice:

once to wake up z, and then until z becomes leader).

Can we do better?!

Time? Messages? ...

QED

12 Stefan Schmid @ T-Labs Berlin, 2013/4

Radius Growth

each node v does the following:

– Initially, all nodes are active (can still become leader)

– Whenever a node v sees a message with w>v, it decides not to be a leader

and becomes passive

– Active nodes search in an exponentially growing neighborhood (clockwise and

counterclockwise) for nodes with higher IDs by sending out probe messages:

a probe includes sender‘s ID, a leader bit saying whether original sender can

still become a leader, and TTL (initially =1).

– All nodes w receiving a probe decrement TTL and foward to next neighbor; if

w‘s ID is larger than original sender‘s ID, the leader bit is set to zero. If TTL=0,

return message to sender (reply msg) including leader bit.

– If leader bit is still 1, double the TTL, and two new probes are sent (for both

neighbors); otherwise node becomes passive.

– If v receives its own probe message (not the reply): it becomes leader.

Algorithm Radius Growth

13 Stefan Schmid @ T-Labs Berlin, 2013/4

Radius Growth

Am I leader here?

14 Stefan Schmid @ T-Labs Berlin, 2013/4

Radius Growth

Am I leader here?

15 Stefan Schmid @ T-Labs Berlin, 2013/4

Radius Growth

Am I leader here?

How to analyze?

Complexities?

16 Stefan Schmid @ T-Labs Berlin, 2013/4

Radius Growth

Theorem

Algo is correct, time complexity O(n),

message complexity O(n log n).

Proof idea?

Correctness: Like clockwise algo.

Time complexity: O(n) since node with max identifier sends messages with
round trip times 2, 4, 8, ..., 2k with k 2 O(log n). The sum constitutes a geometric

series and is hence linear in n.

Message complexity: Only one node can survive phase p that covers a distance of 2p.

So less than n/2p nodes are active in phase p+1. Being active in round p costs roughly 2p

messages, so it‘s around O(n) per round over all active nodes. As we have a logarithmic

number of phases, the claim follows.

QED

17 Stefan Schmid @ T-Labs Berlin, 2013/4

Can we do better?!

18

Or how can we prove

that we cannot?

Lower bounds!

Stefan Schmid @ T-Labs Berlin, 2013/4

Lower Bound (1)

Take-Away

In message passing systems, lower

bounds can often be proved by

arguing about messages that

need to be exchanged!

Concepts:

1. Generally, we need some definitions to characterize the class of algorithms for which

 the lower bound holds.

2. Moreover, in distributed systems, a (hypothetical) scheduler determines

 sequence of events...

Execution

An execution of a distributed algorithm is a list

of events, sorted by time. An event is a record

 (time, node, type, message)

where type is „send“ or „receive“.

19 Stefan Schmid @ T-Labs Berlin, 2013/4

Lower Bound (2)

Assumptions:

- Asynchronous ring: nodes wake up at arbitrary times but always when receiving a packet

- nodes have IDs, and node with max ID should become leader (strong assumption?)

- every node must know ID of leader

- uniform algorithm: n is not known

- arbitrary scheduler but links are FIFO

Open Schedule

Schedule chosen by scheduler. Open if there is

an open edge in the ring. Edge is open if no

message traversing this edge has been received

so far.

For our lower bound proof, we define the concept of open schedules:

20 Stefan Schmid @ T-Labs Berlin, 2013/4

Note: any leader election algorithm must send over each edge at some point!

Otherwise whole network could be hidden behind it.

Some Intuition...

Open Schedule

Schedule chosen by scheduler. Open if there is

an open edge in the ring. Edge is open if no

message traversing edge has been received

so far.

21

Intuition: Open schedule = endpoints have not heard

anything from nodes on this edge, protocol cannot stop yet as it may

hide critical infos on the leader!

We want to show that there exists a bad schedule which requires lots

of messages until a leader is elected. To achieve this, we compute an

open schedule inductively.

Stefan Schmid @ T-Labs Berlin, 2013/4

Lower Bound by Induction

Proof by induction:

Lemma: 2-node Ring

Given a ring R with two nodes, we can construct an open schedule

in which at least one message is received. The nodes cannot distinguish

this schedule from one on a larger ring with all other nodes being located

where the open edge is.

vs

u

u

v

v

Proof of Lemma: u and v

cannot distinguish between the two

scenarios!
open edge: no

messages received

How to make an

open schedule?

22 Stefan Schmid @ T-Labs Berlin, 2013/4

Proof of Lemma: Open Schedule

Given a ring R with two nodes, we can construct an open schedule

in which at least one message is received. The nodes cannot distinguish

this schedule from one on a larger ring with all other nodes being where the

open edge is.

Open schedule for 2-node ring?

In any leader election algorithm, the two nodes must

learn about each other! We stop execution when first message is received

(on whatever link).

We can do this because it‘s an asynchronous world

(no simultaneous arrivals, delay accordingly)...

So other edge is open:

Nodes don‘t know, is it an edge, or is it more?

u

v

open edge

QED

Lemma: 2-node Ring

23

Stop when one message

arrives!

Stefan Schmid @ T-Labs Berlin, 2013/4

Stefan Schmid @ T-Labs, 2011

Open Schedules for Larger Rings?

Lemma 2

By gluing together (at the two open edges) two rings of size n/2 for

which we have open schedules, an open schedule can be constructed on

a ring of size n. Let M(n/2) denote the number of messages used in each

of these schedules by some algorithm ALG. Then, in the entire ring

2M(n/2)+n/4 messages have to be exchanged to solve leader election.

Proof? Open schedule?

n-node Ring

u

v

24

Stefan Schmid @ T-Labs, 2011

I can close one of the edges such that

at least n/4 message receptions are

triggered! And schedule still open.

(Other edge unaffected.)

Idea: take two times

smaller ring, glue together

at open edge and „close“

one edge...

Assume ALG needs

M(n/2) messages

here...

... how many for

the whole ring?

Stefan Schmid @ T-Labs, 2011

Proof of Lemma: By Induction

- Consider the ring of size n and divide it in two „subrings“ R1 and R2. As long as no message

 comes from outside, nodes cannot distinguish these two rings from two rings of size n/2.

 (Just delay messages accordingly: all other messages of algorithm are sent.)

- So nodes exchange 2*M(n/2) messages (induction hypothesis) in the subrings before

 learning anything about the other subring. Wlog assume R1 has max ID. So each node

 in R2 must learn that ID, which requires at least n/2 message receptions.

- So there must be an edge connecting the two rings that „produces“ (= triggers,

 but not necessarily transmits!) at least n/4 messages.

 Schedule/close this edge and leave other open... => open schedule for larger ring! And

 enough messages! 

 M(n/2) M(n/2)

R1 R2

26

How to Construct an Open Schedule?

Take-Away

Just let asynchronous algorithm run and stop before last edge

is closed (i.e., before message arrives).

27

Why > n/4 messages triggered by border edge even if schedule is made open?

R1 R2

1. Maybe this is whole ring: so much information

 must be transferred eventually!

2. Fact independent of schedule:

 learning about events / timing

 of other edges requires

 n/4 messages at least as well!
n/4

Open Schedules for Larger Rings?

Proof by induction: Claim follows from maths...

Theorem

Any algo needs at least

(n log n) messages.

So we are optimal.

Can we do better? 

28 Stefan Schmid @ T-Labs Berlin, 2013/4

Stefan Schmid @ T-Labs, 2011

Breaking the Lower Bound 

Take-Away

In synchronous systems, not receiving

a message is also information!

Idea for message complexity n? E.g., find minimum ID in environment

where nodes have unique but arbitrary integer IDs (but n known)...

each node v does the following:

- Divide time into phases of n steps (leaves time for

lower-ID nodes to broadcast...)

- If phase = v and did not get a message:

- v becomes leader

- v sends „I am leader!“ to everybody!

Sync Leader Election

Breaks message lower bound but we may wait long!

Runtime O(n*minID)? What is the time – message tradeoff? 29

End of lecture

Literature for further reading:

- Attiya/Welch (Alg. 3.1 for example)

- Peleg‘s book

Stefan Schmid @ T-Labs Berlin, 2013/4

