
1

Architecture: The big picture
Goals:
❒  Identify, study

principles that can
guide network
architecture

❒  “Bigger” issues than
specific protocols or
implementation tricks

❒  Synthesis: The really
big picture

Overview:
❒  Telephone network

architecture
❒  Internet design principles
❒  Rethinking the Internet

design principles

2

Key questions

❒ How to decompose the complex system
functionality into protocol layers?

❒ Which functions placed where in network, at
which layers?

❒  Can/should a function be placed at multiple
levels ?

Answer these questions in context of
Internet, telephone net

3

Common view of the telephone network

brick (dumb)

brain (smart)

lock (you can’t get in)

4

Common view of the IP network

5

Internet End-to-End argument

❒  “… functions placed at the lower levels may be redundant
or of little value when compared to the cost of providing
them at the lower level …”

❒  “… sometimes an incomplete version of the function
provided by the communication system (lower levels)
may be useful as a performance enhancement …”

❒  This leads to a philosophy diametrically opposite to the
telephone world of dumb end-systems (the telephone)
and intelligent networks

6

Example: Reliable file transfer

❒  Solution 1: Make each step reliable and then
concatenate them

OS

Appl.

OS

Appl.

Host A Host B

OK

❒  Solution 2: Make each step unreliable and use
end-to-end check and retry

7

Discussion

❒  Solution 1 not good enough!
❍ What happens if the sender or/and receiver

misbehave?
❍  The receiver has to do check anyway!

❒  Thus, full functionality can be entirely
implemented at application layer

❒  No need for reliability at lower layers

8

Discussion

Q: Is there any reason to implement reliability
at lower layers?

A: Yes, but only to improve performance
❒  Example:

❍ Assume high error rate in network
❍ Reliable communication service at data link layer

might help (why)?
❍  Fast detection/recovery of errors

9

Trade-offs

❒  Application has more information about the data and
semantics of required service (e.g., can check only at
the end of each data unit)

❒  Lower layer has more information about constraints
in data transmission (e.g., packet size, error rate)

❒  Note: These trade-offs are a direct result of layering!

10

Internet End-to-End (E2E) argument

❒  Network layer provides one simple service –
best effort datagram (packet) delivery

❒  Transport layer at network edge (TCP) provides
end-end error control
❍  Performance enhancement used by many applications

(which could provide their own error control)
❒  All other functionality …

❍ Application layer functionality
❍ Network services, e.g., DNS
implemented at application level

11

Internet & E2E argument (1)
Discussion: Congestion control, flow control
❒ Why at transport, rather than link or

application layers?
❍ Claim: Common functions should migrate down

the stack
•  Everyone shares same implementation:

No need to redo it (reduces bugs, less work, etc. …)
•  Knowing everyone is doing the same thing, can help

❍ Congestion control too important to leave up to
application/user:

•  True but hard to police
•  Tcp is “outside” the network; compliance is “optional”
•  We do this for fairness (but realize that people could

cheat)

12

Internet & E2E argument (2)
Discussion: Congestion control, flow control: Why at

transport, rather than link or application layers?
❒  Why flow control in TCP, not (just) in app

❍  Shared TCP buffers at receiver meant to control flow at TCP level
(otherwise unfairness)

❒  Shared resources is an important reason to push controlling
functionality to point at which resources are shared

❒  Corollary: Do active queue management (e.g., RED) in network
❍  Question: How much does careful controlled sharing buy you?

13

E2E argument: Interpretations

❒  One interpretation:
❍  A function can only be completely and correctly implemented

with the knowledge and help of the applications standing at the
communication endpoints

❒  Another: (more precise)
❍  A system (or subsystem level) should consider only functions that

can be completely and correctly implemented within it.

❒  Alternative interpretation: (also correct)
❍  Think twice before implementing a functionality that you believe

that is useful to an application at a lower layer
❍  If the application can implement a functionality correctly,

implement it a lower layer only as a performance enhancement

14

E2E argument: Critical issues

❒  End-to-end principle emphasizes:
❍  Function placement
❍ Correctness, completeness
❍ Overall system costs

❒  Philosophy:
❍  If application can do it, don’t do it at a lower layer --

application best knows what it needs
❍ Add functionality to lower layers iff

(1) used by/improves performance of many apps
(2) does not hurt other applications

❍ Allows cost-performance tradeoff

15

E2E argument: Discussion
❒  End-end argument emphasizes correctness and

completeness, not
❍ Complexity: Is complexity at edges result in a

“simpler” architecture?
❍  Evolvability, ease of introduction of new functionality:

Ability to evolve because easier/cheaper to add new
edge applications than change routers?

❍  Technology penetration: Simple network layer makes
it “easier” for IP to spread everywhere

16

Summary: E2E argument

❒  If the application can do it, don’t do it at a
lower layer -- anyway the application knows
the best what it needs
❍ Add functionality in lower layers iff it is

(1) used and improves performances of a large
number of applications
(2) does not hurt other applications

❒  Success story: Internet

17

Internet design philosophy (Clark ’88)

0  Connect existing networks
❍  Initially ARPANET and ARPA packet radio network

1.  Survivability
❍  Ensure communication service even under network/router

failures
2.  Support multiple types of services
3.  Must accommodate a variety of networks
4.  Allow distributed management
5.  Allow host attachment with a low level of effort
6.  Be cost effective

7.  Allow resource accountability

In order of importance:

Different ordering of priorities may
make a different architecture!

18

1. Survivability
❒  Continue to operate even in the presence of network

failures (e.g., link and router failures)
❍  As long as network is not partitioned, two endpoints should be

able to communicate
❍  Any other failure (excepting network partition) should be

transparent to endpoints

❒  Decision: Maintain e2e transport state only at end-points
❍  Eliminates problem of handling state inconsistency and

performing state restoration when router fails

❒  Internet: STateless network architecture
❍  No notion of a session/call at network layer

Grade: A- because convergence times are relatively slow
❍  BGP takes minutes to coverge
❍  IS-IS OSPF take ~ 10 seconds

19

2. Types of Services
❒  Add UDP to TCP to better support apps

❍  E.g., “real-time” applications

❒  Arguably main reason for separating TCP, IP
❒ Datagram abstraction: Lower common

denominator on which other services can be built
❍  Service differentiation was considered (remember

ToS?), but this has never happened on the large scale
(Why?)

Grade: A- proven to allows lots of application to
be invented and flourish (except MM, but maybe
that’s not a transport service issue)

20

3. Variety of Networks

❒  Very successful (why?)
❍  Because of the minimalist service:

•  It requires from underlying network only to deliver a packet
with a “reasonable” probability of success

❒  … does not require:
❍  Reliability
❍  In-order delivery

❒  The mantra: IP over everything
❍  Then: ARPANET, X.25, DARPA satellite network, ...
❍  Now: ATM, SONET, WDM, …

Grade: A can’t name a link layer technology that IP
doesn’t run over (carrier pigeon RFC)

21

Other goals
❒  Allow distributed management

❍  Administrative autonomy: IP interconnects networks
•  Each network can be managed by a different organization
•  Different organizations need to interact only at the boundaries
•  … but this model complicates routing

❍  Grade: A for implementation, B for concept (disagreement)
❒  Cost effective

❍  Sources of inefficiency
•  Header overhead
•  Retransmissions
•  Routing

❍  … but “optimal” performance never been top priority

❍  Grade: A

22

Other goals (2)

❒  Low cost of attaching a new host
❍  Not a strong point higher than other architecture because

the intelligence is in hosts (e.g., telephone vs. computer)
❍  Bad implementations or malicious users can produce

considerably harm (remember fate-sharing?)

❍ Grade: C but things are improving with dhcp,
autoconfigurations. Looks like a higher grade possible some
time in the future

❒  Accountability
❍  Internet gets an “F” Grade

23

What about the future?

❒ Datagram not the best abstraction for:
❍ Resource management, accountability, QoS

❒ Mew abstraction: Flow (see OpenFlow, IPv6)
❍  But no one knows what a flow is

❒  Routers require to maintain per-flow state
❒  State management:

❍ Recall: Recovering lost state is hard
❍ Here we see proposals for “soft state”!
❍  Soft-state: End-hosts responsible to maintain the

state

24

Summary: Internet architecture

❒  Packet-switched datagram
network

❒  IP is the glue (network
layer overlay)

❒  IP hourglass architecture
❍ All hosts and routers run IP

❒  Stateless architecture
❍ No per flow state inside

network

IP

TCP UDP

ATM

Satellite

Ethernet

IP hourglass	

25

Summary: Minimalist approach
❒  Dumb network

❍  IP provide minimal functionalities to support connectivity
❍  Addressing, forwarding, routing

❒  Smart end system
❍  Transport layer or application performs more sophisticated

functionalities
❍  Flow control, error control, congestion control

❒  Advantages
❍  Accommodate heterogeneous technologies (Ethernet, modem,

satellite, wireless)
❍  Support diverse applications (telnet, ftp, Web, X windows)
❍  Decentralized network administration

26

But that was yesterday

…… what about tomorrow?

27

Rethinking Internet design

What’s changed?
❒  Operation in untrustworthy world

❍  Endpoints can be malicious
❍  If endpoint not trustworthy, but want trustworthy

network -> more mechanism in network core
❒  More demanding applications

❍  End-end best effort service not enough
❍ New service models in network (Intserv, diffserv)?
❍ New application-level service architecture built on top

of network core (e.g., CDN, p2p)?

28

Rethinking Internet design (2)

What’s changed?
❒  ISP service differentiation

❍  ISP doing more (than other ISPs) in core maybe a
competitive advantage

❒  Rise of third party involvement
❍  Interposed between endpoints (even against will)
❍  E.g., Chinese gov’t, US recording industry

❒  Less sophisticated users

All five changes may motivate shift away from end-end!

29

What’s at stake?

“At issue is the conventional understanding of
 the `Internet philosophy’

  Freedom of action
  User empowerment
  End-user responsibility for actions taken
  Lack of control “in” the net that limit or regulate what

users can do

The end-end argument fostered that philosophy
because they enable the freedom to innovate, install
new software at will, and run applications of the
users choice”

[Blumenthal and Clark, 2001]

30

Technical response to changes

❒  Trust: Emerging distinction between what is “in”
network (us, trusted) and what is not (them,
untrusted).
❍  Ingress filtering
❍  Emergence of Internet UNI (user network

interface, as in ATM)?
❒  Modify endpoints

❍ Harden endpoints against attack
❍  Endpoints do content filtering: Net-nanny
❍ CDN, ASPs: Rise of structured, distributed

applications in response to inability to send
content (e.g., multimedia, high bw) at high quality

31

Technical response to changes (2)

❒  Add functions to the network core:
❍  Filtering firewalls
❍ Application-level firewalls
❍ NAT boxes
❍ Active networking
❍ Network virtualization

… All operate within network, making use of application-
level information
❍ Which addresses can do what at application level?
❍  If addresses have meaning to applications, NAT

must “understand” that meaning

32

Firewalls

Isolates organization’s internal net from larger
Internet, allowing some packets to pass, blocking
others.

Firewall

administered
network

public
Internet

firewall

33

Firewalls: Why
Prevent denial of service attacks:

❍  SYN flooding: Attacker establishes many bogus TCP
connections, no resources left for “real”
connections.

Prevent illegal modification/access of internal data.
❍  e.g., attacker replaces CIA’s homepage with

something else
Allow only authorized access to inside network

❍  (set of authenticated users/hosts)
Two types of firewalls:

❍ Application-level
❍  Packet-filtering (stateless/stateful)

34

Packet filtering

❒  Internal network connected to Internet via router
firewall

❒  Router filters packet-by-packet, decision to
forward/drop packet based on:
❍  Source IP address, destination IP address
❍  TCP/UDP source and destination port numbers
❍  ICMP message type
❍  TCP SYN and ACK bits

Should arriving
packet be allowed in?
Departing packet let

out?

35

Packet filtering (2)
❒  Example 1: Block incoming and outgoing datagrams

with IP protocol field = 17 and with either source or
dest port = 23.
❍ All incoming and outgoing UDP flows and telnet

connections are blocked.
❒  Example 2: Block inbound TCP segments with

ACK = 0.
❍  Prevents external clients from making TCP

connections with internal clients, but allows
internal clients to connect to outside.

36

Application gateways

❒  Filters packets on
application data as well as
on IP/TCP/UDP fields.

❒  Example: allow select
internal users to telnet
outside.

host-to-gateway
telnet session

gateway-to-remote
host telnet session

application
gateway

router and filter

1. Require all telnet users to telnet through gateway.
2. For authorized users, gateway sets up telnet connection to dest

host. Gateway relays data between 2 connections
3. Router filter blocks all telnet connections not originating from

gateway.

37

NAT: Network Address Translation

❒  Motivation: Local network uses just one IP address as far
as outside word is concerned
❍ No need to be allocated range of addresses from ISP:

just one IP address is used for all devices
❍ Can change addresses of devices in local network

without notifying outside world
❍ Can change ISP without changing addresses of devices

in local network
❍ Devices inside local net not explicitly addressable, visible

by outside world (a security plus)

38

NAT: Network Address Translation
Implementation: NAT router must:

❍ Outgoing datagrams: Replace (source IP address, port
#) of every outgoing datagram to (NAT IP address, new
port #)
… remote clients/servers will respond using (NAT IP

address, new port #) as destination addr.

❍ Remember (in NAT translation table) every (source IP
address, port #) to (NAT IP address, new port #)
translation pair

❍  Incoming datagrams: Replace (NAT IP address, new
port #) in dest fields of every incoming datagram with
corresponding (source IP address, port #) stored in NAT
table

39

NAT: Network Address Translation (2)

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1
sends datagram to
128.119.40, 80

NAT translation table
WAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.1, 3345
…… ……

S: 128.119.40.186, 80
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 80 2

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80
D: 138.76.29.7, 5001 3

3: Reply arrives
 dest. address:
 138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345

40

NAT: Network Address Translation (3)

❒  16-bit port-number field:
❍  60,000 simultaneous connections with a single LAN-

side address!

❒  NAT is controversial:
❍ Routers should only process up to layer 3
❍ Violates end-to-end argument

•  NAT possibility must be taken into account by app designers,
eg, P2P applications

❍ Address shortage should instead be solved by IPv6

41

What is an “Active Network”?

❒  Depends on who you ask!
❒  Active services: Application-level services exploiting

position within the network to provide enhanced
service
❍ CDN
❍  Streaming media caches

❒  Capsule approach: Packets carry programs, active
node executes program when code-carrying packet
arrives to active node
❍  Code may determine what to do with packet
❍  May implement other service: e.g., network management,

reliable multicast

42

The capsule approach to active networks

43

Capsules

❒  Type
❍  Identifier for the forwarding routine to be executed (carries code

by reference)

❒  Previous address
❍  Where to get the forwarding routine from if it is not available in

the present node (Code Distribution)

❒  Dependent Fields
❍  Parameters for the forwarding code

❒  Payload
❍  Header + data of higher layers

IP header Version Type Previous Address Dep fields Payload

ANTS Header

44

Active networking and E2E arguments

❒  End-end principle: Lower layers should have
minimum functionality, but support widest variety of
applications possible
❍ Active networking: support all higher-level

applications
❍ Minimum common functionality: Ability to execute

code: Programmable versus pre-programmed low
layer functionality

45

Active networking: Transparency/efficiency?

❒  Transparency: Use of network by others not very visible
(can more or less predict behavior of network)

❒  Active networking: Transparency difficult
❍ Constrain interactions among programmable entities

in router (who knows what they will try to do)
❍  Like OS trying to constrain interaction among

processes!

❒  Efficiency: Everything has to be programmable

46

KISS

❒  Success of LAN protocols, RISC architecture:
KISS!

❒  “Building complex functions into network
optimizes network for small number of services,
while substantially increasing cost for uses
unknown at design time”

❒  “End-end argument does not oppose active
networks per se but instead strongly suggests
that enthusiasm for the benefits of optimizing
current application needs by making the network
more complex may be misplaced”

47

Epilogue: Will IP take over the world?

Reasons for success of IP:
❍ Reachability: Reach every host, adapts topology

when links fail
❍ Heterogeneity: Single service abstraction (best

effort) regardless of physical link topology

many other claimed (or commonly accepted) reasons
for IP’s success may not be true

… Let’s take a closer look

48

1. IP already dominates global communication?

❒  Business revenues:
❍  ISPs: 13B
❍  Broadcast TV: 29B
❍ Cable TV: 29.8B
❍ Radio broadcast: 10.6B
❍  Phone industry: 268B

❒  Router/telco switch markets:
❍ Core router: 1.7B; edge routers: 2.4B
❍  SONET/SDH/WDM: 28B, Telecom MSS: 4.5B

49

2. IP is more efficient?

❒  Statistical multiplexing versus circuit switching
❒  Link utilization

❍ Avg. link utilization in Internet core: 3% to 30%
❍ Avg. utilization of Ethernet is currently: 1%
❍ Avg. link utilization of long distance phone lines: 33%

❒  Low IP link utilization: On purpose!
❍  Predictability, stability, low delay, resilience to failure

❒  At low utilization, we forfeit benefits of statistical
multiplexing!

50

3. IP is more robust?
❒  Median IP network availability: Downtime: 471 min/yr
❒  Avg. phone network downtime: 5 min/yr

❒  Convergence time with link failures:
❍  BGP: 3 – 15 minutes
❍  SONET: 50 ms

❒  Inconsistent routing state
❍ Human misconfigurations
❍  In-band signaling (signaling and data share same

network)
❍ Routing computation “complex”

51

4. IP is simpler?

❒  Intelligence at edge, simplicity in core
❍ Cisco IOS: 8M lines of code
❍  Telephone switch: 3M lines of code

❒  Linecard complexity:
❍ Router: 30M gates in ASICs, 1 CPU, 300M packet

buffers
❍  Switch: 25% of gates, no CPU, no packet buffers

5. Support of real-time app’s telephony over IP
❍ Not yet

52

Discussion: Benefits of IP?
❒  IP supports many different types of data applications at a

wide range of data rates
❒  Phone network: 1 or many services (voice, fax, touch-

tone service, 800 numbers, teletype, hearing impaired
services, lots of enhanced voice services, voicemail…

❒  IP traffic, services more diverse (?). IP works at higher
bandwidths (factually true for end applications, but cores
are both high speed)

❒  Claim: IP supports short bursty connections
“better” (implicit: Less setup cost, less resources used –
not that important given utilization figures)

❒  IP has 1 rtt transaction times, phone network is at least 2
rtt (setup plus transaction)

