
1

Application Layer

Goals:

r Conceptual aspects of network application
protocols

mClient server paradigm

mService models

r Review protocols by examining popular
application-level protocols

m HTTP

m DNS

2

Applications and application-layer protocols

Application: communicating,
distributed processes

m Running in network hosts in
“user space”

m Exchange messages to
implement app

m E.g., email, file transfer, the
Web

Application-layer protocols

m One “piece” of an app

m Define messages exchanged
by apps and actions taken

m User services provided by
lower layer protocols

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

3

Client-server paradigm

Typical network app has two
pieces: client and server

application
transport
network
data link
physical

application
transport
network
data link
physical

Client:

r Initiates contact with server
(“speaks first”)

r Typically requests service from
server,

r E.g., request WWW page, send
email

Server:

r Provides requested service to
client

r E.g., sends requested WWW
page, receives/stores received
email

request

reply

4

Services provided by
Internet transport protocols

TCP service:

r Connection-oriented: setup
required between client, server

r Reliable transport between
sending and receiving process

r Flow control: sender won’t
overwhelm receiver

r Congestion control: throttle
sender when network overloaded

r Does not providing: timing,
minimum bandwidth guarantees

UDP service:

r Unreliable data transfer
between sending and
receiving process

r Does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
or bandwidth guarantee

5

WWW: The HTTP protocol

HTTP: hypertext transfer
protocol

r WWW’s application layer
protocol

r Client/server model

m Client: browser that
requests, receives,
“displays” WWW objects

m Server: WWW server sends
objects in response to
requests

PC running
Explorer

Server
running

NCSA Web
server

Mac running
Navigator

http request

htt
p r
eq
ue
st

http response

htt
p r
esp
on
se

6

HTTP - timeline

r Mar 1990 CERN labs document proposing Web

r Jan 1992 HTTP/0.9 specification

r Dec 1992 Proposal to add MIME to HTTP

r Feb 1993 UDI (Universal Document Identifier) Network

r Mar 1993 HTTP/1.0 first draft

r Jun 1993 HTML (1.0 Specification)

r Oct 1993 URL specification

r Nov 1993 HTTP/1.0 second draft

r Mar 1994 URI in WWW

r May 1996 HTTP/1.0 Informational, RFC 1945

r Jan 1997 HTTP/1.1 Proposed Standard, RFC 2068

r Jun 1999 HTTP/1.1 Draft Standard, RFC 2616

r 2001 HTTP/1.1 Formal Standard

r …

7

Protocols that maintain “state”
are complex!

r Past history (state) must be
maintained

r If server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

The HTTP protocol: More

HTTP: TCP transport service

r Client initiates TCP connection
(creates socket) to server, port
80

r Server accepts TCP connection
from client

r http messages (application-layer
protocol messages) exchanged
between browser (http client)
and WWW server (http server)

r TCP connection closed

HTTP is “stateless”

r Server maintains no
information about past
client requests

8

HTTP message format: Request

r Two types of http messages: Request, response

r http request message:

m ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1

Connection: close

User-agent: Mozilla/4.0

Accept: text/html, image/gif,image/jpeg

Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

9

HTTP message format: Reply

HTTP/1.1 200 OK

Connection: close

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998

Content-Length: 6821

Content-Type: text/html

data data data data data ...

status line
(protocol
status code
status phrase)

header
lines

data, e.g.,
requested
html file

10

HTTP reply status codes

200 OK

m Request succeeded, requested object later in this message

301 Moved Permanently

m Requested object moved, new location specified later in this
message (Location:)

400 Bad Request

m Request message not understood by server

404 Not Found

m Requested document not found on this server

505 HTTP Version Not Supported

In first line in server → client response message.

A few sample codes:

11

HTTP request methods

r Methods

m GET

m HEAD

m POST

m PUT

m Delete

12

The HTTP protocol: Even more

r Non-persistent connection:
One object in each TCP connection

m Some browsers create multiple TCP connections
simultaneously – one per object

r Persistent connection:
Multiple objects transferred within one TCP connection

r Pipelined persistent connections:
Multiple requests issued without waiting for response

13

User-server interaction: Authentication

Authentication goal: Control
access to server documents

r Stateless: Client must present
authorization in each request

r Authorization: Typically name,
password

m Authorization:

header line in request

m If no authorization, server
refuses access, sends

WWW authenticate:

header line in response

client server

usual http request msg

401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization:line

usual http response msg

usual http request msg
+ Authorization:line

usual http response msg time

14

User-server interaction: Conditional GET

r Goal: Don’t send object
if client has up-to-date
stored (cached) version

r Client: Specify date of
cached copy in http
request
If-modified-since:

<date>

r Server: Response
contains no object if
cached copy up-to-date:
HTTP/1.0 304 Not

Modified

client server

http request msg
If-modified-since:

<date>

http response
HTTP/1.0

304 Not Modified

object
not

modified

http request msg
If-modified-since:

<date>

http response
HTTP/1.1 200 OK

…

<data>

object
modified

15

User-server state: Cookies

Most Web sites use cookies

Four components:

1) Cookie header line of HTTP
response message

2) Cookie header line in HTTP
request message

3) Cookie file kept on user’s
host, managed by user’s
browser

4) Back-end database at Web
site

Example:

m Susan access Internet
always from same PC

m She visits a specific e-
commerce site for first time

m When initial HTTP requests
arrives at site, site creates a
unique ID and creates an
entry in backend database
for ID

16

Cookies: Keeping “state”

client server

usual http request msg

usual http response +

Set-cookie: 1678

usual http request msg

cookie: 1678

usual http response msg

usual http request msg

cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific
action

server
creates ID

1678 for user

entry in backend

database

access

ac
ce

ss

Cookie file

amazon: 1678

ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678

ebay: 8734

one week later:

17

Cookies: Keeping “state” (2)

What cookies can bring:

r Authorization

r Shopping carts

r Recommendations

r User session state
(Web e-mail)

Cookies and privacy:

r Cookies permit sites to
learn a lot about you

r You may supply name
and e-mail to sites

r Search engines use
redirection & cookies to
learn yet more

r Advertising companies
obtain info across sites

aside

18

Web caches (proxy server)

r User sets browser:
WWW accesses via
web cache

r Client sends all http
requests to web cache

m If object at web cache,
web cache immediately
returns object in http
response

m Else requests object
from origin server, then
returns http response to
client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

http request

htt
p r
eq
ue
st

http response

htt
p r
esp
on
se

htt
p r
eq
ue
st

htt
p r
esp
on
se

http requesthttp response

origin
server

origin
server

19

Why WWW caching?

Assume: Cache is “close” to
client (e.g., in same
network)

r Smaller response time:
cache “closer” to client

r Decrease traffic to distant
servers

m Link out of
institutional/local ISP
network often bottleneck

origin
servers

public
Internet

institutional
network

1 Gbps LAN

8 Mbps
access link

institutional
cache

20

Web 2.0: E.g., AJAX enabled apps

r E.g.: Google Maps: a canonical AJAX application

21

Content distribution networks (CDNs)

Content providers are the CDN
customers.

Content replication

r CDN company installs hundreds
of CDN servers throughout
Internet

m In lower-tier ISPs, close to
users

r CDN replicates its customers’
content in CDN servers. When
provider updates content, CDN
updates servers

origin server

in North America

CDN distribution node

CDN server

in S. America CDN server

in Europe

CDN server

in Asia

22

CDN example

Origin server

r www.foo.com

r Distributes HTML

r Replaces:
http://www.foo.com/sports.ruth.gif

with
http://www.cdn.com/www.foo.com/sports/ruth.gif

HTTP request for

www.foo.com/sports/sports.html

DNS query for www.cdn.com

HTTP request for

www.cdn.com/www.foo.com/sports/ruth.gif

1

2

3

Origin server

CDNs authoritative

DNS server

Nearby

CDN server

CDN company

r cdn.com

r Distributes gif files

r Uses its authoritative
DNS server to route
redirect requests

23

More about CDNs

Routing requests

r CDN creates a “map”,
indicating distances
from leaf ISPs and CDN
nodes

r When query arrives at
authoritative DNS
server

m Server determines ISP
from which query
originates

m Uses “map” to determine
best CDN server

Not just Web pages

r Streaming stored
audio/video

r Streaming real-time
audio/video

m CDN nodes create
application-layer overlay
network

24

DNS: Domain Name System

People: many identifiers:

m SSN, name, Passport #

Internet hosts, routers:

m IP address (32 bit) – used for addressing datagrams

m “name”, e.g., gaia.cs.umass.edu – used by humans

Q: Map between IP addresses and name?

r Secure Domain Name System (DNS)
Dynamic Update: RFC 3007

25

DNS: Domain Name System

Domain Name System:

r Distributed database: Implemented in hierarchy

of many name servers

r Application-layer protocol: Host, routers, name

servers communicate to resolve names

(address/name translation)

m Core Internet function implemented as

application-layer protocol

m Complexity at network’s “edge”

26

DNS name servers

Why not centralize DNS?

r Single point of failure

r Traffic volume

r Distant centralized database

r Maintenance

Does not scale!

27

DNS name servers (2)

No server has all name-to-IP address mappings

Local name servers:

m Each ISP, company has local (default) name server

m Host DNS query first goes to local name server

Authoritative name server:

m For a host: stores that host’s IP address, name

m Can perform name/address translation for that host’s
name

28

DNS: Hierarchical naming tree

29

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

Distributed, hierarchical database

Client wants IP for www.amazon.com; 1st approx:
r Client queries a root server to find com DNS server

r Client queries com DNS server to get amazon.com DNS
server

r Client queries amazon.com DNS server to get IP address
for www.amazon.com

30

DNS: Root name servers

r Contacted by local name server that can not resolve name
r Root name server:

m Contacts authoritative name server if name mapping
not known

m Gets mapping
m Returns mapping to local name server
m Some use anycast

b USC-ISI Marina del Rey, CA

l ICANN Marina del Rey, CA

e NASA Mt View, CA

f Internet Software C. Palo Alto,

CA

i NORDUnet Stockholm

k RIPE London

m WIDE Tokyo

a NSI Herndon, VA

c PSInet Herndon, VA

d U Maryland College Park, MD

g DISA Vienna, VA

h ARL Aberdeen, MD
j NSI (TBD) Herndon, VA

13 root name
servers worldwide

31

TLD and authoritative servers

r Top-level domain (TLD) servers: Responsible for
com, org, net, edu, etc, and all top-level country
domains uk, fr, ca, jp.
m Network solutions maintains servers for com TLD

m Educause for edu TLD

r Authoritative DNS servers: Organization’s DNS
servers, providing authoritative hostname to IP
mappings for organization’s servers (e.g., Web
and mail).
m Can be maintained by organization or service
provider

32

Local name server

r Does not strictly belong to hierarchy

r Each ISP (residential ISP, company, university)
has one.

m Also called “default name server”

r When a host makes a DNS query, query is sent
to its local DNS server

m Acts as a proxy, forwards query into hierarchy.

33

DNS records

DNS: Distributed db storing resource records (RR)

r Type=NS
m name is domain (e.g.,

foo.com)

m value is IP address of

authoritative name server
for this domain

RR format: (name, value, type, ttl)

r Type=A
m name is hostname

m value is IP address

r Type=CNAME

m for alias

r Type=MX

m for mail

34

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

7
8

TLD DNS server

Example

r Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

35

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

3

Recursive queries

Recursive query:

r Puts burden of name
resolution on contacted
name server

r Heavy load?

Iterated query:

r Contacted server
replies with name of
server to contact

r “I don’t know this
name, but ask this
server”

36

DNS: Iterative queries

Recursive query:

r Puts burden of name
resolution on contacted
name server

r Heavy load?

Iterated query:

r Contacted server
replies with name of
server to contact

r “I don’t know this
name, but ask this
server”

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2
3

4

5 6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

37

Mapping IP address to names

r Special domain: ARPA

ARPA

in-addr

130

149

49

68 68.49.149.130.in-addr.arpa.

