Application Layer

Goals:

- Conceptual aspects of network application protocols
 - Client server paradigm
 - Service models
- Review protocols by examining popular application-level protocols
 - **OHTTP**
 - O DNS

Applications and application-layer protocols

Application: communicating, distributed processes

- Running in network hosts in "user space"
- Exchange messages to implement app
- E.g., email, file transfer, the
 Web

Application-layer protocols

- One "piece" of an app
- Define messages exchanged by apps and actions taken
- User services provided by lower layer protocols

Client-server paradigm

Typical network app has two pieces: *client* and *server*

Client:

- Initiates contact with server ("speaks first")
- Typically requests service from server,
- E.g., request WWW page, send email

Server:

- Provides requested service to client
- E.g., sends requested WWW page, receives/stores received email

Services provided by Internet transport protocols

TCP service:

- Connection-oriented: setup required between client, server
- Reliable transport between sending and receiving process
- Flow control: sender won't overwhelm receiver
- Congestion control: throttle sender when network overloaded
- Does not providing: timing, minimum bandwidth guarantees

<u>UDP service:</u>

- Unreliable data transfer between sending and receiving process
- Does not provide: connection setup, reliability, flow control, congestion control, timing, or bandwidth guarantee

WWW: The HTTP protocol

HTTP: hypertext transfer protocol

- WWW's application layer protocol
- Client/server model
 - Client: browser that requests, receives, "displays" WWW objects
 - Server: WWW server sends objects in response to requests

HTTP - timeline

```
□ Mar 1990
             CERN labs document proposing Web
  Jan 1992 HTTP/0.9 specification
              Proposal to add MIME to HTTP
Dec 1992
             UDI (Universal Document Identifier) Network
Feb 1993
              HTTP/1.0 first draft
□ Mar 1993
              HTML (1.0 Specification)
  Jun 1993
             URL specification
□ Oct 1993
              HTTP/1.0 second draft
□ Nov 1993
□ Mar 1994
            URT in WWW
  May 1996
              HTTP/1.0 Informational, RFC 1945
  Jan 1997
              HTTP/1.1 Proposed Standard, RFC 2068
              HTTP/1.1 Draft Standard, RFC 2616
□ Jun 1999
              HTTP/1.1 Formal Standard
2001
```

The HTTP protocol: More

HTTP: TCP transport service

- Client initiates TCP connection (creates socket) to server, port
- Server accepts TCP connection from client
- http messages (application-layer protocol messages) exchanged between browser (http client) and WWW server (http server)
- TCP connection closed

HTTP is "stateless"

Server maintains no information about past client requests

aside

Protocols that maintain "state" are complex!

- Past history (state) must be maintained
- ☐ If server/client crashes, their views of "state" may be inconsistent, must be reconciled

HTTP message format: Request

- Two types of http messages: Request, response
- http request message:
 - ASCII (human-readable format)

```
request line
(GET, POST,
HEAD commands)

header lines

Connection: close
User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr

Carriage return,
line feed
indicates end
of message
```

HTTP message format: Reply

```
status line
  (protocol
                 HTTP/1.1 200 OK
 status code
                 Connection: close
status phrase)
                 Date: Thu, 06 Aug 1998 12:00:15 GMT
                 Server: Apache/1.3.0 (Unix)
         header
                 Last-Modified: Mon, 22 Jun 1998 .....
          lines
                 Content-Length: 6821
                 Content-Type: text/html
                 data data data data ...
 data, e.g.,
 requested
  html file
```

HTTP reply status codes

In first line in server \rightarrow client response message.

A few sample codes:

200 OK

Request succeeded, requested object later in this message

301 Moved Permanently

 Requested object moved, new location specified later in this message (Location:)

400 Bad Request

Request message not understood by server

404 Not Found

Requested document not found on this server

505 HTTP Version Not Supported

HTTP request methods

- Methods
 - GET
 - HEAD
 - POST
 - o PUT
 - Delete

The HTTP protocol: Even more

- Non-persistent connection:
 - One object in each TCP connection
 - Some browsers create multiple TCP connections simultaneously – one per object
- ☐ Persistent connection:
 - Multiple objects transferred within one TCP connection
- ☐ Pipelined persistent connections:
 - Multiple requests issued without waiting for response

User-server interaction: Authentication

Authentication goal: Control access to server documents

- Stateless: Client must present authorization in each request
- Authorization: Typically name, password
 - Authorization: header line in request
 - If no authorization, server refuses access, sendswww authenticate:header line in response

User-server interaction: Conditional GET

- Goal: Don't send object if client has up-to-date stored (cached) version
- Client: Specify date of cached copy in http request

```
If-modified-since:
     <date>
```

Server: Response contains no object if cached copy up-to-date: HTTP/1.0 304 Not Modified

<u>User-server state: Cookies</u>

Most Web sites use cookies

Four components:

- 1) Cookie header line of HTTP response message
- 2) Cookie header line in HTTP *request* message
- Cookie file kept on user's host, managed by user's browser
- 4) Back-end database at Web site

Example:

- Susan access Internet always from same PC
- She visits a specific ecommerce site for first time
- When initial HTTP requests arrives at site, site creates a unique ID and creates an entry in backend database for ID

Cookies: Keeping "state"

Cookies: Keeping "state" (2)

What cookies can bring:

- Authorization
- Shopping carts
- Recommendations
- User session state (Web e-mail)

----- aside -

Cookies and privacy:

- Cookies permit sites to learn a lot about you
- You may supply name and e-mail to sites
- Search engines use redirection & cookies to learn yet more
- Advertising companies obtain info across sites

Web caches (proxy server)

Goal: satisfy client request without involving origin server

- User sets browser: WWW accesses via web cache
- Client sends all http requests to web cache
 - If object at web cache, web cache immediately returns object in http response
 - Else requests object from origin server, then returns http response to client

Why WWW caching?

Assume: Cache is "close" to client (e.g., in same network)

- Smaller response time: cache "closer" to client
- Decrease traffic to distant servers
 - Link out of institutional/local ISP network often bottleneck

Web 2.0: E.g., AJAX enabled apps

☐ E.g.: Google Maps: a canonical AJAX application

Content distribution networks (CDNs)

Content providers are the CDN customers.

Content replication

- CDN company installs hundreds of CDN servers throughout Internet
 - In lower-tier ISPs, close to users
- CDN replicates its customers' content in CDN servers. When provider updates content, CDN updates servers

Origin server

- www.foo.com
- Distributes HTML
- Replaces:

http://www.foo.com/sports.ruth.gif

with

http://www.cdn.com/www.foo.com/sports/ruth.gif

CDN company

- cdn.com
- Distributes gif files
- Uses its authoritative DNS server to route redirect requests

More about CDNs

Routing requests

- CDN creates a "map", indicating distances from leaf ISPs and CDN nodes
- When query arrives at authoritative DNS server
 - Server determines ISP from which query originates
 - Uses "map" to determine best CDN server

Not just Web pages

- Streaming stored audio/video
- Streaming real-time audio/video
 - CDN nodes create application-layer overlay network

DNS: Domain Name System

People: many identifiers:

SSN, name, Passport #

Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- o "name", e.g., gaia.cs.umass.edu used by humans

Q: Map between IP addresses and name?

Secure Domain Name System (DNS)Dynamic Update: RFC 3007

DNS: Domain Name System

Domain Name System:

- Distributed database: Implemented in hierarchy of many name servers
- Application-layer protocol: Host, routers, name servers communicate to resolve names (address/name translation)
 - Core Internet function implemented as application-layer protocol
 - Complexity at network's "edge"

DNS name servers

Why not centralize DNS?

- Single point of failure
- □ Traffic volume
- Distant centralized database
- Maintenance

Does not scale!

DNS name servers (2)

No server has all name-to-IP address mappings Local name servers:

- Each ISP, company has local (default) name server
- Host DNS query first goes to local name server

Authoritative name server:

- For a host: stores that host's IP address, name
- Can perform name/address translation for that host's name

DNS: Hierarchical naming tree

Distributed, hierarchical database

Client wants IP for www.amazon.com; 1st approx:

- Client queries a root server to find com DNS server
- Client queries com DNS server to get amazon.com DNS server
- Client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: Root name servers

- Contacted by local name server that can not resolve name
- Root name server:
 - Contacts authoritative name server if name mapping not known
 - Gets mapping
 - Returns mapping to local name server
 - Some use anycast

TLD and authoritative servers

- □ Top-level domain (TLD) servers: Responsible for com, org, net, edu, etc, and all top-level country domains uk, fr, ca, jp.
 - Network solutions maintains servers for com TLD
 - Educause for edu TLD
- Authoritative DNS servers: Organization's DNS servers, providing authoritative hostname to IP mappings for organization's servers (e.g., Web and mail).
 - Can be maintained by organization or service provider

Local name server

- Does not strictly belong to hierarchy
- Each ISP (residential ISP, company, university) has one.
 - Also called "default name server"
- When a host makes a DNS query, query is sent to its local DNS server
 - Acts as a proxy, forwards query into hierarchy.

DNS records

DNS: Distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

- Type=A
 - name is hostname
 - value is IP address
- Type=NS
 - name is domain (e.g., foo.com)
 - value is IP address of authoritative name server for this domain

- Type=CNAME
 - for alias
- Type=MX
 - for mail

Example

Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

Recursive queries

Recursive query:

- Puts burden of name resolution on contacted name server
- Heavy load?

<u>Iterated query:</u>

- Contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

DNS: Iterative queries

Recursive query:

- Puts burden of name resolution on contacted name server
- Heavy load?

Iterated query:

- Contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

Mapping IP address to names

Special domain: ARPA

