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Cambridge, UK Lisbon, Portugal

timothy.griffin@cl.cam.ac.uk joao.sobrinho@lx.it.pt

ABSTRACT
There is a shortage of routing protocols that meet the needs
of network engineers. This has led to BGP being pressed
into service as an IGP, despite its lack of convergence guar-
antees. The development, standardization, and deployment
of routing protocols, or even minor changes to existing pro-
tocols, are very difficult tasks. We present an approach
called Metarouting that defines routing protocols using a
high-level and declarative language. Once an interpreter for
a metarouting language is implemented on a router, a net-
work operator would have the freedom to implement and
use any routing protocol definable in the language. We en-
force a clean separation of protocol mechanisms (link-state,
path-vector, adjacency maintenance, and so on) from rout-
ing policy (how routes are described and compared). The
Routing Algebra framework of Sobrinho [25] is used as the
theoretical basis for routing policy languages. We define the
Routing Algebra Meta-Language (RAML) that allows for
the construction of a large family of routing algebras and
has the key property that correctness conditions — guaran-
tees of convergence with respect to the chosen mechanisms
— can be derived automatically for each expression defining
a new routing algebra.
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C.2 [Computer Systems Organization]: Computer-Com-
munication Networks—Network Protocols, Internetworking
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1. GOOD ROUTING PROTOCOLS
ARE HARD TO FIND

Routers today come with a fixed number of routing pro-
tocols. Network operators and engineers must solve their
routing and connectivity problems as best they can with
this small set of tools. For IP unicast routing — to which
we restrict our attention in this paper — this means that
their solutions must use only static routing together with
the standardized dynamic routing protocols RIP, OSPF, IS-
IS, and BGP [13, 1, 21, 11], or the proprietary EIGRP [23]
of Cisco Systems. Although BGP was developed as an inter-
domain routing protocol, it is currently being used by many
large enterprises as an intra-domain routing protocol (this
should not be confused with using internal BGP, or IBGP,
which is an essential component of inter-domain routing).

Many researchers may be shocked by the idea of using an
EGP as an IGP. Network operators are a much more prag-
matic group — they have problems to solve now and they
simply do their best with the tools available. In fact, several
recent books on BGP provide advice on how best to “break
the rules” and use BGP for intra-domain routing. Chapter
5 of [28] and Chapter 3 of [27] both explain the rationale
for this approach and present configuration options to ad-
dress particular kinds of network challenges. BGP is useful
as an IGP because it provides more hierarchical structure
and enables the implementation of well-defined administra-
tive boundaries — often essential in geographically dispersed
and administratively heterogeneous networks. Of equal im-
portance is the fact that traditional IGPs are all based on
shortest paths with severe limitations in terms of policy con-
trol over routing. For example, with shortest path routing it
is very difficult to implement different policies for different
destinations.

In short, BGP is being used as an IGP not because it
is ideal, but because it is available, it has expressive pol-
icy control mechanisms, it can be used to implement ad-
ministrative boundaries, and it scales well. An unstated
reason is related to the difficulty of developing and deploy-
ing new routing protocols, or even minor modifications to
existing protocols. Beyond the demanding standardization
process, the fact remains that it is very difficult to develop
well-behaved protocols with the sophisticated policy control
required by intra-domain routing in many large enterprises.

This is not a positive development in many regards, since
BGP has no convergence guarantees [15]. Furthermore, when
BGP is used as an IGP, routing policies have fewer con-
straints than inter-domain routing where the standard “pre-
fer customer routes over peer routes over provider routes”



policies provides at least partial protection against protocol
divergence [6]. Beyond protocol divergence, policy interac-
tion in BGP can result in multiple stable solutions, some
intended by policy writers while others are not, and when
a routing system becomes wedged in an unwanted routing
solution it may be very difficult to debug [10].

In this paper we propose a new approach to the defini-
tion and deployment of routing protocols called metarouting.
A metarouting specification defines a routing protocol in a
high-level and declarative fashion. Routers need only imple-
ment an interpreter (or compiler) for a routing metalanguage
in order to run any protocol so specified. Metarouting al-
lows any network operator to specify a new routing protocol
and then to use it.

Our approach is based on four ideas. First, we clearly sep-
arate protocol mechanisms (link-state, path-vector, hard- or
soft-state, adjacency maintenance) from routing policy (how
routes are described and compared). Second, the theoret-
ical framework of metarouting is to be found in the long
tradition of path algebras (see [7, 2, 19] for several exam-
ples). That is, the means of describing routes and com-
paring route preference is captured in algebraic structures
having rigorously defined semantics. In this paper we will
adopt the Routing Algebra framework of Sobrinho [25] as
our basic algebraic model. The reason for this is that this
algebraic model was developed specifically to address rich
policy control as found in BGP. Third, a key novel compo-
nent of metarouting is the use of a language for defining new
and more complex algebras from simpler ones. We present
one language for the routing algebras of Sobrinho, called
the Routing Algebra Meta-Language (RAML). RAML is a
collection of simple base algebras together with a set of op-
erators that take algebras as arguments and return new al-
gebras. In this way, RAML can be used to define a large
family of routing algebras. Fourth, RAML is designed so
that correctness conditions can be automatically derived for
each expression defining a new algebra. For each base al-
gebra certain monotonicity properties are shown to hold.
Then each algebraic operator is associated with rules that
describe how it preserves the monotonicity properties of its
argument algebras. In this way monotonicity properties are
easy to derive for any RAML expression.

Metarouting can be viewed within a larger effort attempt-
ing to disaggregate and standardize the components of rout-
ing software and hardware, which the vendors have typ-
ically built as monolithic systems with many proprietary
implementation details and interfaces. This work has in-
cluded kernel design [3], modular implementation data-plane
elements in Click [14], modular routing software as with
FIRE [22] and XORP [12], and efforts to standardize the
interfaces and protocols for low-level forwarding units in the
FORCES working group [5] of the IETF. A missing aspect
has been how to deal with the complex policy component of
routing protocols in a generic yet high-level manner — and
this is what metarouting is attempting to provide.

We do not imagine that every network operator would in
fact want to define their own protocols. We imagine that
metarouting could eventually enable a natural division of
labor between the IETF and the network operator commu-
nity — metarouting itself could be standardized within the
IETF, while metarouting specifications of routing protocols
could be developed and standardized within the operator
community.

Section 2 describes the decomposition of a routing pro-
tocol into mechanism and policy components, reviews the
routing algebras of Sobrinho [25], and describes algebraic
properties of routing algebras that guarantee convergence
with a specific routing algorithm. Section 3 presents the
Routing Algebra Meta-Language, RAML, and develops mono-
tonicity preservation properties of each RAML construct.
For readability and space reasons, all proofs have been elim-
inated. In Section 4 we show examples of using metarouting
to develop and implement a new IGP. Developing new rout-
ing protocols will never be a trivial task, but we feel that
metarouting will reduce the associated effort by several or-
ders of magnitude. Section 5 presents a metarouting model
of BGP, and considers how this approach might aid in im-
proving this protocol. This section illustrates how RAML
can aid researchers by providing a framework for the analysis
of routing protocols. Section 6 defines label modalities that
describe how abstract link labels are actually constructed
from the information in router configurations on either side
of a routing adjacency. Modalities represent a rug under
which we sweep some of the protocol details that are not
important from a purely theoretical perspective, but are
important from the perspective of a network operator con-
figuring a network of routers. Section 7 concludes with a
discussion of directions for future research.

2. WHAT IS A ROUTING PROTOCOL?
At the highest level, we can decompose most routing pro-

tocols into two components — mechanism and policy. By
policy we mean the information that describes the charac-
teristics of a route, the method of comparing route charac-
teristics to determine route preference, and the method in
which local policy is applied to routes, potentially changing
a route’s characteristics or limiting the scope of its propaga-
tion. By mechanism we mean how routing messages are ex-
changed, how routing adjacencies are established and main-
tained, and what type of route selection algorithms are used
to select best routes. Route selection algorithms rely on the
policy component to determine route preferences.

It might seem that “route selection algorithm” and “the
method of comparing route characteristics to determine route
preference” refer to the same thing. However, they are not
for a large class of routing protocols. A simple example
may help clarify this point. Shortest-path routing attaches
weights to links and the important characteristic of a route
is the sum of these link weights along the path it repre-
sents. We can talk about one route being more preferred
than another when it is associated with a lower cost path.
Now, there are several route selection algorithms that use
this method of preference to compute best routes — link in-
formation flooding combined with Dijkstra’s algorithm and
distributed Bellman-Ford are the most well known exam-
ples, and of course these are the algorithms associated with
link-state and distance-vector routing protocols.

What allows us to generalize this picture is an algebraic

approach to routing in the tradition of Gondran, Minoux,
and Carré [7, 2, 19]. In this paper we use the routing al-
gebras as defined by Sobrinho [25], which are reviewed in
detail in Section 2.1. A routing algebra comes with a set of
signatures that describes characteristics of a route. It also
defines the method of determining route preference based
only on route signatures. Finally, a routing algebra general-
izes the notion of a link weight to a policy label (referred to



simply as a “label”), and it defines how a policy label and a
signature combine to form a new signature.

2.1 Routing Algebras
We now provide a brief overview of routing algebras as de-

veloped by Sobrinho [24, 25]. Routing algebras are best un-
derstood as a generalization of shortest path routing. This
is illustrated in Figure 1(a) for the traditional shortest path
scenario. Node v has a path to a route originated by node
w, indicated by the dotted line, and the length of this path
has been computed to be m (this path may involve multiple
nodes). Node v has a neighbor u, and there is an arc from
node v to u with weight n. The composition of the (v, u)
arc with the w to v path results in a path from w to u of
length n + m.

We use the convention that the arc’s orientation points in
the same direction as the flow of routing information in a
path-vector protocol. Note that data traffic associated with
a route travels in the opposite direction, from u to w.

(a) w
n

u v

m

n + m

(b) w
λ

u v

σ

λ ⊕ σ

Figure 1: How path lengths are computed in the
standard shortest path setting (a), and how path
signatures are computed in the routing algebra set-
ting (b).

This basic picture is generalized by routing algebras and
is illustrated in Figure 1 (b). A routing algebra A is a tuple

A = 〈Σ,¹, L, ⊕, O〉,

where Σ is a set of signatures for describing paths, ¹ is a
preference relation over signatures, L is a set of labels, ⊕ is
a label application function that maps L × Σ to Σ, and O
is an origination set describing the signatures that can be
associated with originated routes.

A preference relation (commonly used in economics, see
for example [17]), conforms to two rules,

(completeness) for each x, y ∈ Σ, we have either x ¹ y
or y ¹ x (or both),

(transitivity) for each x, y, z ∈ Σ, if x ¹ y and y ¹ z,
then x ¹ z.

If x ¹ y we say that x is weakly preferred to y. If x ¹ y but
y ¹ x does not hold, then we write x ≺ y and say that x is

strictly preferred to y. If x ¹ y and y ¹ x, then we write

x ∼ y and say that x and y are equally preferred. Note
that x ∼ y does not mean that x = y. This fact is impor-
tant for both the expressiveness of routing algebras and for
the modeling of equal-cost multipath routing. For example,
consider the simple case where Σ represents sequences of in-
tegers (perhaps router IDs or ASNs) and x ¹ y holds if and
only if the length of x is less than or equal to the length of
y. Then (2, 3, 4) ≺ (7, 1, 2, 5) and (2, 3, 4) ∼ (7, 1, 2) yet
(2, 3, 4) 6= (7, 1, 2). This is exactly the kind of comparison
that BGP uses on the ASPATH attribute.

Note that we have reversed the preference order with re-
spect to the conventions found in most economics texts. We
do this because we will be using preference to minimize path
cost rather than to maximize some benefit. Our routing al-
gebra notation differs somewhat from that presented in [24,
25] — we use a preference relation instead of its implemen-
tation in terms of utility functions. Following the original
notation we would say that Σ comes with an associated set
of weights W totally ordered with ≤ and a ranking function

f that maps Σ into W . In the notation above, σ1 ¹ σ2

means that f(σ1) ≤ f(σ2).
Optionally, an algebra may come with a special signature,

φ ∈ Σ, which is associated with prohibited paths — paths
with signature φ cannot be used for forwarding and are not
propagated by routing protocols. We insist that for all σ 6= φ
we have σ ≺ φ.

The job of a dynamic routing protocol is to compute
routes, and for us a route will have the form

r = 〈p, nh, σ〉,

where p represents a set of destination addresses (a prefix),
nh is the next-hop address, and σ is the signature describing
the characteristics of this route. Such routes could represent
static routes, or be computed by a routing protocol.

In Figure 1 (b), the signature σ ∈ Σ describes the path
from node v to the originating node w, and λ ∈ L describes
the policy applied on the arc from node v to node u. The
signature describing the path from node w to u is then λ⊕σ.
Labels and signatures may contain rather complex objects,
and it is not required that L = Σ.

For route origination, we will define a set of origination

signatures, O ⊆ Σ, to constrain the signatures that can be
legally attached to routes that are injected into the proto-
col, either from static routes or from other protocols. For
example, in BGP originated routes must have an empty AS-
PATH, as seen by the originating router.

2.2 Convergence Guarantees
The basic notion of correctness for routing protocols can

be informally stated as follows. Once all changes have ceased
in a network, a routing protocol should eventually determine
stable forwarding tables that implement loop-free paths be-
tween every pair of endpoints that are allowed connectivity
by policy.

In the algebraic approach to routing, correctness is en-
sured with a clean separation of concerns. First, certain
algebraic properties are identified for routing algebras. Sec-
ond, generic algorithms are developed and proved correct
for any algebra having the algebraic properties required by
the algorithm.

For vectoring algorithms (generalizations of distributed
Bellman-Ford), Sobrinho [25] showed that the important al-
gebraic property is strict monotonicity (SM):



(SM) For all σ ∈ Σ − {φ}, and for all λ ∈ L, σ ≺ λ ⊕ σ.

A vectoring algorithm that is using an SM algebra will al-
ways be correct. The SM property can also be used to show
that there can be no forwarding loops in the resulting for-
warding paths.

The RAML presented in Section 3 is designed to make it
easy to derive complex SM algebras. In order to do this we
need a slightly weaker property, called monotonicity (M):

(M) For all σ ∈ Σ, and for all λ ∈ L, σ ¹ λ ⊕ σ.

Note that SM implies M.
Protocols such as IS-IS and OSPF are not based on vec-

toring but use link-state approaches that rely on several dis-
tinct components. First, a link-state flooding mechanism is
used to distribute each router’s local information to all other
routers in the link-state routing domain. Second, an algo-
rithm is used locally on each router that computes best paths
in the network, as modelled by a weighted graph, and uses
these paths to determine next-hops for each route. Typi-
cally, some version of Dijksta’s algorithm [4] is employed.
Third, forwarding paths are constructed by the concate-
nation of the next hops determined independently at each
node.

It is possible to generalize link state flooding and Dijk-
stra’s algorithm to an arbitrary algebraic context [19, 24].
However, requirements for correctness are more restrictive.
We require the associativity of ⊕ (which in turn requires
that L = Σ), and that the algebra be isotonic (I):

(I) For all σ1, σ2, σ3 ∈ Σ, if σ1 ¹ σ2, then σ3⊕σ1 ¹ σ3⊕σ2

and σ1 ⊕ σ3 ¹ σ2 ⊕ σ3.

In addition, SM for such algebras must include the SM de-
fined above (left-SM) as well as a right-SM rule. When
constructing new algebras it turns out that these additional
constraints are very difficult to preserve.

It is important to note that we can still call a mecha-
nism “link-state” even when the local algorithm bears no
relation to Dijkstra’s algorithm. In particular, if an alge-
bra is only SM, then one could use a link-state approach
with a local algorithm that essentially simulates vectoring
on a local model of the network. This is not as strange as
it might seem at first glance. In the case that the routing
domain is not too large, it may actually be a reasonable,
especially if fast convergence and complex policy control are
both required. We will call this approach Local Path-Vector

Simulation (LPVS). Table 1 indicates when an algebra is
correctly associated with a given algorithm.

SM I assoc. ⊕
vectoring

√

link-state with Generalized Dijkstra
√ √ √

link-state with LPVS
√

Table 1: Correctness for various algebra/algorithm
combinations.

2.3 Base Algebras
Table 2 presents a collection of simple routing algebras,

together with their monotonicity property. Each algebra is
now explained in turn.

Algebra Description Properties
add(n, m) int addition SM (if 1 ≤ n ≤ m)
mult(n, m) int product M (if 1 ≤ n ≤ m)
multr(n, m) real product −
max(n) maximum M
min(n) minimum −
lp(n) local preference −
op(n) origin preference M
seq(n, m) sequences SM
simseq(n, m) simple sequences SM
tags(t) route tags M

Table 2: Basic Routing Algebras.

For integers n and m, the routing algebra add(n, m)
represents addition in the range n to m. It has integer sets
L = O = {n, . . . , m} and Σ = {n, . . . , m} ∪ {φ}, where
¹ is taken to be the standard order ≤ on integers, extended
to make φ the least preferred. The operator ⊕ is defined as
normal addition, except for values that are out of range:

i ⊕ j =


φ if (i + j) 6∈ {n, . . . , m},
i + j otherwise.

For example, here is the ⊕ table for add(1, 5):

Σ

L

⊕ 1 2 3 4 5 φ
1 2 3 4 5 φ φ
2 3 4 5 φ φ φ
3 4 5 φ φ φ φ
4 5 φ φ φ φ φ
5 φ φ φ φ φ φ

This table conforms to a convention used throughout the
paper — rows are associated with labels displayed in the left-
most column, while columns are associated with signatures,
displayed along the top row. The signatures are presented
with preference decreasing from left to right.

min(3) max(3)
⊕ 1 2 3
1 1 1 1
2 1 2 2
3 1 2 3

⊕ 1 2 3
1 1 2 3
2 2 2 3
3 3 3 3

lp(3) op(3)
⊕ 1 2 3
1 1 1 1
2 2 2 2
3 3 3 3

⊕ 1 2 3
κ 1 2 3

Figure 2: The ⊕ tables of several simple routing
algebras.

The algebra mult(n, m) is are defined in a similar man-
ner for integer multiplication. The algebra multr(n, m)
represents real multiplication (at some fixed precision), for
reals between n and m. The algebras min(n) and max(n)
both have L = Σ = O = {1, . . . , n}, with the preference
relation being the standard order ≤ on integers. The oper-
ations i ⊕ j are defined to be the minimum and maximum,



respectively, of {i, j}. Figure 2 presents the ⊕ tables for
min(3) and max(3).

The algebra lp(n) (local preference) has L = Σ = O =
{1, . . . , n} and the ⊕ operator is defined as i⊕ j = i. That
is, the last link in a path determines the total path weight.
The dual algebra, op(n) (origin preference), has L = {κ},
Σ = O = {1, . . . , n}, and ⊕ operator is defined as κ⊕j = j.
That is, signatures can only be copied with κ and the orig-
inating node determines the total path weight — the only
way signatures can be attached to routes is at origination.
The ⊕ tables for lp(3) and op(3) are also presented in Fig-
ure 2.

We will also use several base algebras that do not lend
themselves well to tabular presentation due to the large
number of entries. Signatures in the routing algebra seq(n, m)
are finite sequence σ over the integers in {0, . . . , n}, whose
length | σ | is at most m. The preference relation is defined

as σ1 ¹ σ2
def
= | σ1 |≤| σ2 |. The ⊕ operation is defined as

i ⊕ σ =


φ if m =| σ |,
i :: σ otherwise,

where i :: σ denotes adding i to the head of the sequence σ.
The algebra of simple sequences, simseq(n, m), is defined
in the same manner, except that ⊕ is defined as

i ⊕ σ =


φ if m =| σ | or i ∈ σ,
i :: σ otherwise.

In both cases the origination set is defined as O = {()},
where () represents the empty sequence.

Finally, if t is some type, such as int or string, then
the signatures of the tags algebra, tags(t), represents all
finite sets of objects of type t. All such sets are given equal

preference. The ⊕ operation allows for insertion and deletion
of elements and copying:

⊕ σ
i(σ1) σ ∪ σ1

d(σ1) σ − σ1

κ σ

We will see later that tags are very useful for implementing
complex routing policies.

3. A ROUTING ALGEBRA
METALANGUAGE

A metarouting language is any language that allows us to
define routing protocol, RP , as

RP = 〈A, M, LM〉,
where A is a routing algebra, M is a set of mechanisms
that can be associated with a routing adjacency (multiple
mechanisms may be used for the same protocol, and LM is
a set of label modalities that are described in Section 6).

Constructing new routing algebras by hand, especially
complex ones, can be a difficult and tedious task. This is
even more true when we are required to prove monotonic-
ity conditions. To address this, we present a Routing Al-
gebra Meta-Language (RAML) for the specification of new
routing algebras. RAML represents a compromise — every
expressions in RAML represents a routing algebra, but it
is certainly not the case that any routing algebra can be
expressed in RAML. In compensation, monotonicity condi-
tions can be automatically derived for RAML specifications,

much like types in many programming languages. That is,
no tedious proofs are required of the protocol designer using
RAML. Such a formalism could take many forms, but the
one presented here represents our own attempt to strike a
balance between mathematical simplicity and usefulness.

If X and Y are sets, we use the notation X ]Y to denote
their disjoint union, which can be defined as {〈0, x〉 | x ∈
X} ∪ {〈1, y〉 | y ∈ Y }.

3.1 Lexical Product, A ⊗ B

We start with binary operations. Suppose we are given
two routing algebras,

A = 〈ΣA, ¹A, LA, ⊕A, OA〉, B = 〈ΣB , ¹B , LB , ⊕B , OB〉,
and we want to define binary operators • for constructing
new routing algebra A • B,

A • B = 〈Σ, ¹, L, ⊕, O〉,
We would like the definition of each operator to be fairly
simple and natural.

One natural approach is to take Σ as the product ΣA×ΣB

and define ¹ as the lexicographic preference relation:

〈σA, σB〉 ¹ 〈βA, βB〉 def
=

σA ≺A βA or (σA ∼A βA and σB ¹B βB).

A bit of care must be taken if either ΣA or ΣB contains the
prohibited signature φ. In this case we define Σ as ((ΣA −
{φ})× (ΣB −{φ}))∪{φ}, and extend the definition of ¹ so
that 〈σA, σB〉 ≺ φ for all 〈σA, σB〉 ∈ Σ.

One way to apply labels to product signatures is to do it
pair-wise. Define O as OA ×OB , L as LA × LB , and ⊕ as

⊕ 〈σA, σB〉
〈λA, λB〉 〈λA ⊕A σA, λB ⊕B σB〉,

where λi ∈ Li and σi ∈ Σi. However, if either λA ⊕A σA or
λB ⊕B σB is equal to φ, then

〈λA, λB〉 ⊕ 〈σA, σB〉 = φ.

In addition, it is always the case that 〈λA, λB〉 ⊕ φ = φ.
Product algebras are very useful for routing protocols with

multiple routing metrics. For example, we can think of the
route selection of BGP as a lexicographic comparison of mul-
tiple attributes (see Section 5 for more details). OSPF pro-
vides another example that may not be so obvious. At first
glance, it may seem that OSPF is a simple protocol needing
only an algebra of the form add(1, m). However, careful
reading of the protocol specification [20] reveals that in fact
it is using a lexicographic ordering. An OSPF signature can
be modeled as a pair, 〈α, d〉, where α contains area infor-
mation and d represents distance. Route preference must
be defined so that intra-area routes are preferred over inter-
area routes, no matter what the values of route distance,
and this can be accomplished with lexicographic preference.
(For more discussion of OSPF, see Section 7.)

The binary lexical product naturally generalizes to an n-
ary lexical product,

⊗(A1, A2, . . . , An).

It is often useful to have some means of naming the individ-
ual components of a products signature for ease of notation
when it comes to writing conditional policy labels described
below. For this we introduce the unary operator a : A, which



produces a routing algebra which is exactly like A, except
that each signature is now a pair 〈a, σ〉, usually written as
a : σ. Now a fully labeled n-ary product can then be written
as

⊗(a1 : A1, a2 : A2, . . . , an : An),

where the ai are unique labels associated with the sub-
algebras. All (non-φ) signatures then have the form

〈a1 : σ1, a2 : σ2, . . . , an : σn〉.
If all attributes of a product are uniquely labeled, then an
implementation need not enforce a strict order on the se-
quence of values in a tuple.

Another useful feature for products, present in BGP, is
the ability to have optional attributes. There are several
reasonable ways of accomplishing this within RAML, each
with slightly different semantics. Although optional argu-
ments may seem trivial at first glance, they illustrate well
the metarouting approach. Our desire to preserve algebraic
properties, such as M and SM, provides a rigorous frame-
work in which to explore alternative definitions. And we
can do this in isolation from the distracting complexities —
inherent and accidental — of a particular routing protocol.
Once we sort out these issues and encode our understanding
in well-defined operators, we then can use them repeatedly
to construct complex yet mathematically tractable proto-
cols.

First, we must decide how missing values are treated by
the preference relation. Suppose we are defining a version of
A⊗B where the first element is optional, and we denote the
missing value with the null signature ⊥. We could extend
the definition of ¹ on product algebras so that

(⊥, σB) ¹ (βA, βB) ⇔ (σA, σB) ¹ (⊥, βB) ⇔ σB ¹B βB .

That is, if one of the first elements is ⊥, we ignore this
element and use only the ¹B preference relation of B. But
there is a problem with this. For any σA, βA, we have
(σA, σB) ¹ (⊥, σB) ¹ (σA, σB). Therefore (⊥, σB) ∼
(σA, σB). That is, if ¹ is to be a preference relation, it must
be that the ∼-class of every tuple (σA, σB) is identical to
that of (⊥, σB). This does not seem to be a fruitful approach
— the first component serves no purpose!

Rather than modify the definition of ⊗, it seems more
reasonable to define a unary operator ⊥(A) that creates a
version of A that allows for the null signature ⊥. It then
seems reasonable that the ⊕ operation would then be some
combination of the following rules:

⊕ ⊥ σA

λ ⊥ λ ⊕A σA

⊥ ⊥ ⊥
σ̂A σ̂A φ

The rule σ̂A ⊕ ⊥ = σ̂A allows a signature to be treated as
a label, and turns a null signature into σ̂A (so in this case,
we need to define L as (LA ∪ {⊥}) ] Σ). But how should
we define the preference of ⊥? Since ⊥ ⊕ ⊥ = ⊥ = λ ⊕ ⊥,
the resulting algebra will never be SM, no matter how the
preference of ⊥ is defined. However, suppose that we want
⊥(A) to preserve M. Then ⊥ ⊕ σA = ⊥ tells us that for
all σ 6= φ, σ ¹ ⊥. That is, ⊥ must be a least preferred
signature. On the other hand, the rule σ̂B ⊕ ⊥ = σB tells
us that, to preserve M, we need ⊥ ¹ σ for all σ 6= φ. That
is, in this case ⊥ must be a most preferred signature.

To solve this issue we define four flavors of ⊥(A). The
algebras ⊥(min, A) and ⊥(max, A) both have the ⊕ ta-
ble defined above, but the first takes ⊥ as a minimal ele-
ment, while the second takes ⊥ to be a maximal element.
Neither preserves M. Next we define two M-preserving vari-
ants, ⊥p(min, A), that gives ⊥ a minimal preference and
⊥p(max, A), that gives ⊥ a maximal preference. Their ⊕
tables are defined as

⊥p(min, A) ⊥p(max, A)
⊕ ⊥ σA

λ ⊥ λ ⊕A σ
σB σB φ

⊕ ⊥ σA

λ ⊥ λ ⊕A σ
⊥ ⊥ ⊥

Note that with ⊥p(max, A), once an element is ⊥, it will
stay ⊥.

3.2 Scoped Product, A ¯ B

Another way to apply labels to product signature is to do
it point-wise:

⊕ 〈σA, σB〉
λA 〈λA ⊕A σA, σB〉
λB 〈σA, λB ⊕B σB〉

This is mathematically clean, but it does not seem to be
very useful for the definition of routing protocols. However,
a small modification produces

⊕ 〈σA, σB〉
〈λA, σ̂B〉 〈λA ⊕A σA, σ̂B〉

λB 〈σA, λB ⊕B σB〉

That is, 〈λA, σ̂B〉⊕〈σA, σB〉 = 〈λA ⊕A σA, σ̂B〉 states that
λA is applied to the first component while the second compo-
nent is replaced by σ̂B ∈ ΣB . The new label set L is defined
to be (LA ×OB)]LB . This algebra, called the scoped prod-

uct, has an interesting interpretation — it captures routing
with administrative regions and boundaries in the style of
BGP. However, it does this in a completely generic fashion,
assuming only that algebra A is used between administrative
entities, while B is used inside of each administrative entity.

Figure 3 illustrates this with a simple scenario having two
administrative regions (enclosed in dashed lines). Region 1
is made of up of routers 1 and 2 and region 2 is made up
of routers 3 and 4. We do not want internal routing infor-
mation (using signature of B) to be exported beyond region
boundaries. We do want external information (using signa-
ture of A) to flow into and out of administrative regions.
Suppose σ ∈ ΣA and β ∈ ΣB . We will use pairs 〈σ, β〉
as signatures, with lexical preference. Inside of an admin-
istrative region, B labels only will be used to change the β
component.

For example, in Figure 3, router 1 originates the signature
〈σ0, β0〉, and passes this to router 2. The policy arc from
router 1 to router 2 is labeled with λ1

B ∈ LB , producing the
signature 〈σ0, β1〉 = 〈σ0, λ1

B ⊕B β0〉 at router 2. Router
3 is in another administrative region, and so the label on
the policy arc from router 2 to router 3 must supply both a
label λA ∈ LA and an initializing value β2 ∈ OB for the B
component. This produces the signature 〈σ1, β2〉 = 〈λA ⊕A

σ0, β2〉 at router 3. Finally, the internal link from router 3
to router 4 is labeled with λ2

B ∈ LB , producing the signature
〈σ1, β3〉 = 〈σ1, λ2

B ⊕B β2〉 at router 4.
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λ2 = 〈λA, β2〉

〈λA ⊕A σ0, β2〉

Figure 3: Illustration of the scoped product A ¯ B.

3.3 Disjunction, A ¢ B

Suppose we want to define an operation that allows the
use of either A or B or both together. We define a new
signature set Σ as ΣA ] ΣB . Then force every σA ∈ ΣA to
have a higher preference than every σB ∈ ΣB . That is, if
σ1, σ2 ∈ ΣA]ΣB , then σ1 ¹ σ2 if σ1, σ2 ∈ ΣA and σ1 ¹A σ2,
or if σ1, σ2 ∈ ΣB and σ1 ¹B σ2, or if σ1 ∈ ΣA and σ2 ∈ ΣB .
Let t be an injection function that maps ΣA to ΣB . Define
the ⊕ operator of A ¢t B as

⊕ σA σB

λA λA ⊕A σA φ
λB φ λB ⊕B σB

i t(σA) φ

We will use A ¢ B to denote disjunction when the last rule
is not used.

3.4 Programmatic Labels, prog(A)

So far labels have been fairly simple constructs. We now
show how labels can be extended in a natural way to pro-

grammatic labels. Suppose that algebra A has labels LA and
operator ⊕A. The signature, preference relation, and origi-
nation set of prog(A) are those of A. The set L and the ⊕
operation are defined inductively as follows. First, the set
LA is contained in L, and for all λA ∈ LA and all σA ∈ ΣA

we have λA ⊕A σA = λA ⊕ σA. Second, the rejection label

φ is in L and φ ⊕ σ = φ. Third, if λA, λB ∈ L, then the
sequential label λ = λA; λB is in L and

(λA; λB) ⊕ σA = λA ⊕ (λB ⊕ σA).

Fourth, if p is a predicate over a signature set ΣA and
λ1, λ2 ∈ L, then the conditional label

λ = if p then λ1 else λ2

is in L and

(if p then λ1 else λ2) ⊕ σA =


λ1 ⊕ σA if p(σA)
λ2 ⊕ σA otherwise

We assume that predicates p are simple boolean formulas
constructed over atomic predicates over the domains as-
sociated with base algebras. The remarkable thing about
prog(A) is that it preserves both M and SM while greatly
increasing policy expressiveness. For example, different “base
labels” (λ ∈ LA) can be applied to different routes, based
on properties of the associated signatures.

3.5 Monotonicity Preservation

A B A ⊗ B A ¯ B A ¢t B
M M M − M
M SM SM − M
SM M SM M M
SM SM SM SM SM
SM ∗ SM − −

Table 3: Binary operators of RAML.

Table 3 presents the preservation properties of the binary
operators. The last line of this table means that if A is SM,
then A ⊗ B is SM, no matter what properties hold for B.
This has very important protocol design implications. Fig-
ure 4 restates the property preservation as a design pattern

for n-ary products — if we want such products to be SM,
then it is enough to have a sequence of algebras having M,
followed by at least one algebra having SM, followed by any
routing algebras. Put another way, if you are going to have a
well-behaved n-ary product and you have some sub-algebras
that do not have any nice properties, then put them “to the
right” of well-behaved algebras in the product.

⊗(

all M or SM
z }| {

A, . . . , Ak−1,

SM
z}|{

Ak ,

don’t care
z }| {

Ak+1, . . . , An)
| {z }

SM

Figure 4: The design pattern for producing an SM
n-ary product.

We introduce one more useful (unary) operator. The al-
gebra flip(A) is identical to A in all respects except for its
preference relation, which is reversed:

σ1 ¹ σ2 ⇔ σ2 ¹A σ1

To properly treat the preservation properties of this operator
we need to introduce two new monotonicity properties, anti-
monotonicity (AM) and strict anti-monotonicity (SAM):

(AM) For all σ ∈ Σ, for all λ ∈ L, λ ⊕ σ ¹ σ.

(SAM) For all σ ∈ Σ − {φ}, for all λ ∈ L, λ ⊕ σ ≺ σ.

(Note that a routing algebra, such as op(n), can be both
M and AM.) The flip(A) operator then has the following
preservation property:



A flip(A)
M AM

AM M
SM SAM

SAM SM

A full treatment of this would involve extending Table 3 to
indicate how AM and SAM are preserved. For space reasons
we do not do that here. But note that it is fairly easy to
show that flip(A ⊗ B) is equivalent to flip(A) ⊗ flip(B),
so that, at least for product signatures, we can always push
this operator down toward the leaf expressions.

Note that the algebra min(n) is AM, so that flip(min(n))
is M. For example, flip(min(5)) has this ⊕ table:

⊕ 5 4 3 2 1
1 1 1 1 1 1
2 2 2 2 2 1
3 3 3 3 2 1
4 4 4 3 2 1
5 5 4 3 2 1

Note that the signature 5 is the most preferred signature,
yet ⊕ is defined as x⊕ y = min(x, y). We might define this
algebra as

width(n)
def
= flip(min(n)),

which would be useful as a monotonic (M) metric for band-
width. Another useful monotonic algebra is

reliability
def
= flip(multr(0, 1)),

which can model the reliablity of a path when reliability
estimates are known for each link.

Since monotonicity properties are important, it is useful
to have operators that “coerce” any algebra to one in which
a monotonicity property holds. The unary operator fm(A)
(force monotonicity) eliminates any violations of monotonic-
ity simply by forcing any offenders to take the signature φ.
Define the ⊕ operation as

λ ⊕ σ =


φ if λ ⊕A σ ≺ σ
λ ⊕A σ otherwise

It should be clear that fm(A) is always monotonic (M). For
example, the ⊕ table of fm(min(5)) is

⊕ 1 2 3 4 5 φ
1 1 φ φ φ φ φ
2 1 2 φ φ φ φ
3 1 2 3 φ φ φ
4 1 2 3 4 φ φ
5 1 2 3 4 5 φ

An operator to force SM, fsm(A), is defined in much the
same way. The forcing operators do no always produce in-
teresting results. For example, the ⊕ table of fsm(min(5))
contains only φ entries (the algebra min(n) is AM). This
leads us to consider more gentle techniques for inducing
monotonicity.

Suppose we pair up each σ of A with a level counter to
form tuples of the form 〈i, σ〉, which will be compared lexico-
graphically, with the normal integer order ≤ used as the pref-
erence relation on the first component. The idea is to “bump
up” the level counter for any application of ⊕A that violates

a monotonicity constraint. The ⊕ operation of lm(n, A)
(lift to monotonicity) is defined as

λ⊕〈i, σ〉 =

8

<

:

〈i, λ ⊕A σ〉 if σ ¹A λ ⊕A σ
〈i + 1, λ ⊕A σ〉 if λ ⊕A σ ≺A σ and i < n
φ otherwise

The operator lsm(n, A) (lift to strict monotonicity) is de-
fined in a similar manner. The integer n is simply an upper
bound on the level counter. For example, the ⊕ table of
lm(2, min(5)) is presented in Table 4.

4. DOWN WITH BGP!
As mentioned, BGP is currently being used as an IGP.

Here we consider how RAML might be used to define more
suitable routing protocols. Many applications may need
only a RIP-like protocol that scales to large networks and
supports complex policy routing. The following routing al-
gebra, MyFirstIGPA, captures this well.

prog(⊗(weight : add(1, 232),
router-path : simseq(232, 30),
tags : tags(string)))

The attribute router-path is used both to break ties be-
tween routes with equal weight and to avoid the problem
of counting to infinity. This algebra supports programmable
labels that can apply policy conditionally:

λ = router-path.label := 10.10.10.10;
if ’data center’ is in tags
then weight.label := 20
else if ’sales center’ is in tags

then weight.label := 30
else reject

Here the notation weight.label denotes the label associated
with the weight component of the product signature, and
“reject” means apply the φ label.

Suppose we require an IGP for a very large network that
has three levels of (nested) administrative areas. Metropoli-
tan area networks (MANs) link offices within small geo-
graphic areas. Regional area networks (RANs) link together
MANs within large geographic regions. The Global Network
(GN) links together all of the RANs. We would like to hide
information (and route flapping) between areas. For this we
define the following routing algebra.

GNA def
= ⊗(G-weight : add(1, 232),

R-path : simseq(232, 30),
G-tags : tags(string))

RANA def
= ⊗(R-weight : add(1, 232),

M-path : simseq(232, 30),
R-tags : tags(string))

MANA def
= ⊗(M-weight : add(1, 232),

router-id-path : simseq(232, 30),
M-tags : tags(string))

MyIGPA def
= prog(GNA ¯ (RANA ¯ MANA))

Signatures in the MyIGPA algebra are 9-tuples that are
compared lexicographically. Each signature has the follow-



⊕ (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) φ
1 (1, 1) (2, 1) (2, 1) (2, 1) (2, 1) (2, 1) φ φ φ φ φ
2 (1, 1) (1, 2) (2, 2) (2, 2) (2, 2) (2, 1) (2, 2) φ φ φ φ
3 (1, 1) (1, 2) (1, 3) (2, 3) (2, 3) (2, 1) (2, 2) (2, 3) φ φ φ
4 (1, 1) (1, 2) (1, 3) (1, 4) (2, 4) (2, 1) (2, 2) (2, 3) (2, 4) φ φ
5 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) φ

Table 4: The ⊕ table for lm(2, min(5)).

ing form (ignoring attribute names).

〈

change
between
RANs

z }| {

wg, pr, tg , 〈

change
between
MANs

z }| {

wr, pm, tr,

change
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MANs

z }| {

〈 wm, pi, tm
| {z }

re-initialized
between
MANs

〉〉

| {z }

re-initialized between RANs

〉,

We have indicated where attributes change and where they
are re-initialized. Note that the set of tags associated with
routes are independent for each administrative area and
“vanish” when routes cross administrative boundaries. If
needed, policy can be used to translate tags from one area
to another. Routes get originated withing MANs, and a
typical origination policy might be to set the regional and
global attributes to minimal values.

One could imagine different MANs might require different
local algebras. For example, suppose that some MANs want
to break ties using bandwidth, others with reliability, while
others will use neither of these tie breakers. We might then
modify the definition of MANA as follows.

bw
def
= bandwidth : width(232)

ry
def
= reliability : reliability

tie-break
def
= ⊥(min, ry ¢ bw)

MANA def
= ⊗(M-weight : add(1, 232),

router-id-path : simseq(232, 30),
tie-break : tie-break,
M-tags : tags(string))

Note that if different MANs originate different sets of pre-
fixes, then no routes with different tie breaking techniques
will be compared. However, if this is not the case then the
specification tells us no tie break (⊥) will be preferred over
reliability, which in turn is preferred over bandwidth.

The IGPs defined above are all SM. This is easy to derive
from the monotonicity properties of the base algebras and
the preservation properties of the operators used.

5. LONG LIVE BGP!
We now study the policy component of BGP within RAML.

Using the scoped product, we define

BGPA = EBGPA ¯ IBGPA,

where EBGPA models the EBGP policy component, IBGPA

models the IBGP policy component. In this paper we focus
only on EBGP and do not go into the details of modeling
IBGP.

EBGPA def
= prog(⊗(locpref : flip(lp(232)),

aspath : simseq(216, 200),
origin : op(3),
med : ⊥(min, lp(232)),
community : ⊥(min, tags(int))))

Figure 5: An RAML expression for the EBGP rout-
ing algebra.

The definition of EBGPA is fairly straightforward, and
is presented in Figure 5. The local preference attribute,
locpref, uses lp(n), but with the preference reversed (larger
integers are more preferred). The aspath is a simple se-
quence of AS numbers, where the maximum length is set
to 200. The origin attribute in BGP has value IGP, EGP,
or INCOMPLETE, and the lowest origin type are preferred,
where IGP < EGP < INCOMPLETE. We use op(3) to
model this. The med attribute (Multi-Exit Discriminator)
is used to implement “cold potato” routing. In order to
avoid the notorious problems of this attribute [18, 26], we
model med as if this attribute is always compared, no mat-
ter what the next hop ASN.

As it stands, the expression in Figure 5 represents an al-
gebra that is neither M nor SM. But note that if we replace

the localpref component with a expression that is merely
monotonic (M), then it follows from the design pattern of
Figure 4 that the entire expression will be strictly monotonic
(SM). This is due to the presence of the SM algebra used for
AS paths. Thus, if we can replace the localpref component
with an M algebra and define an SM algebra for IBGP, then
we would have a BGP that is guaranteed to converge, no
matter how it is (mis-) configured.

It is known that the standard practice of preferring cus-
tomer routes over peer routes, and peer routes over provider
routes provide at least some protection from BGP diver-
gence [6]. We now demonstrate how easily similar results
are obtained using RAML. First, recall that the routing al-
gebra lp(3) has the ⊕ table

⊕ 1 2 3
1 1 1 1
2 2 2 2
3 3 3 3

For readability, we rename the signatures as follows: 1 to C
(customer routes), 2 to R (peer routes), and 3 to P (provider
routes). Similarly, we rename the labels as follows: 1 to c
(labels a link to a customer), 2 to r (labels a link to a peer),
and 3 to p (labels a link to a provider). This produces the
⊕ table



⊕ (1, C) (1, R) (1, P ) (2, C) (2, R) (2, P ) (3, C) (3, R) (3, P ) φ
c (1, C) (2, C) (2, C) (2, C) (3, C) (3, C) (3, C) φ φ φ
r (1, R) (1, R) (2, R) (2, R) (2, R) (3, R) (3, R) (3, R) φ φ
p (1, P ) (1, P ) (1, P ) (2, P ) (2, P ) (2, P ) (3, P ) (3, P ) (3, P ) φ

Table 5: The ⊕ table for lm(2, lp(3)), after lp(3) signatures have been renamed, 1 → C, 2 → R, 3 → P , and
labels renamed, 1 → c, 2 → r, and 3 → p.

⊕ C R P
c C C C
r R R R
p P P P

For example, the rule

p ⊕ C = P

can be read as follows: if one of my providers sends me a
route from one of its customers, then I will treat it as a
provider route. This algebra is not M, but we can transform
it to an M algebra by application of the fm operator to
obtain

⊕ C R P φ
c C φ φ φ
r R R φ φ
p P P P φ

which is very similar to the standard customer/peer/provider
rules. For example, c⊕R = φ can be read as follows: a cus-
tomer cannot send one of its peer routes to a provider (or
a provider cannot accept a customer’s peer routes). In fact,
our table is more general than the rules of [6, 25] in that
r ⊕ R = R and not φ. Note that our relationships can be
implemented on a per prefix basis, since the labels of our al-
gebra are conditional/sequential “programs” over the labels
{c, r, p} (we are using the prog operator). In other words,
using the generic operators of RAML, we are able to easily
obtain results more general than those of [6, 25] for a model
of BGP that captures more detail of the actual protocol.
In addition, we see that in the context of the definition of
the routing algebra for EBGP (Figure 5), we only need this
to be M for the entire expression to be SM — that is, we
don’t have to assume that there are no customer/provider
cycles in the relationship graph as is done [6]. Such cycles,
although odd, really pose no problems for convergence.

Instead of forcing monotonicity, let us instead try lifting to
monotonicity. Table 5 presents the ⊕ table for lm(2, lp(3)),
with labels and signatures renamed as above. This is very
similar to the scheme presented in [9] to model BGP with
backup routes. That model required an entire appendix of
tedious correctness proofs. Here we merely apply a generic
operator. In addition, our resulting algebra is more general,
and includes useful cases that are eliminated in [9]. For
example, the rule

c ⊕ (1, P ) = (2, C)

means that a provider can take a route from a customer that
the customer is getting from one of its providers (creating
a “valley” in the AS path). Of course the level number is
increased making the route less preferred. But this would ac-
tually represent a potential revenue source for the customer,
or a viable emergency routing plan. This type of arrange-
ment is very difficult to implement in BGP today. If this

sort of transit is not appropriate in a given AS, then filters
can be applied to ensure that this cannot happen (remem-
ber, we have the prog operator providing programmable
labels). However, this does seem to provide more flexibil-
ity than most implementations today — and this represents
potential revenues to ISP.

In fact, there is no reason to force a choice between these
options, we could combine them into this locpref replace-
ment:

class : fm(lp(3)) ¢t(x)=〈1, x〉 lclass : lm(k, lp(3))

This would allow operators to combine these approaches as
they see fit.

Due to space reasons we do not model IBGP in this paper.
However, observe that the scoped product operator provides
more structure than exists in the current design of BGP. For
example, in a RAML model of BGP, all IBGP elements re-
side in the second component of the scoped product and do
not “leak into” the first component. Contrast this with the
current BGP design where elements such as the ASPATH for
confederations are hacked into the EBGP component, even
though they are a part of IBGP. With the scoped product
we would naturally define a new attribute for BGP confed-
eration ASPATHs, and the length of this path could then
be used in the EBGP route selection process. As with the
MyIGP example, a new community set needs to be defined
for IBGP, which is not the same as the EBGP community
attribute, and this internal community set would automat-
ically vanish at AS boundaries. This actually corresponds
closely with common practice among network operators in
making a sharp distinction between internal and external
communities values.

6. LABEL MODALITIES
So far the labels have been fairly abstract objects associ-

ated with arcs between nodes. However, in the world of real
protocols it matters how a label gets attached to the net-
work model. This is especially true when two routers that
share an adjacency but reside in different administrative do-
mains — this requires some type of cooperation to construct
labels.

N M

Export policy of MImport policy of N

λN ; λM

Figure 6: Construction of shared labels.

One way to accomplish this using sequential lables is il-
lustrated in Figure 6. Here we imagine that nodes N and M



are in different administrative domains. We would expect
that the label on the link from N to M would be some-
how constructed by both N and M — or more precisely, by
information from the configuration of N and from the con-
figuration of M . If λN can be constructed from information
at N , and λM can be constructed from information at M ,
then (λN ; λM ) ⊕ σ = λN ⊕ (λM ⊕ σ) represents the com-
position of these policies. That is, λN represents an import

policy at N , and λM represents an export policy at M .
The details of how this information is presented in con-

figuration associated with N and M , and how these policies
are applied are interesting implementation issues, but be-
yond the scope of the current paper. However, we note that
some protocols may require that the export and import rules
define a single “atomic” label, not a sequential label. For
example, for our model of BGP (Section 5) a sequential la-
bel would involve adding two ASNs to an ASPATH at each
AS boundary, rather than one. It is primarily for this type
of situation that we introduce the notion of a label modality.

(a) local (b) peer

(c) local nodal (d) peer nodal

λ λ

λ

λ

λ

λ

Figure 7: Four label modalities.

Figure 7 illustrates the four major label modalities. In this
figure, each filled circle represents the router that controls
the value of λ associated with the adjacent arc(s). That
is, the configuration of the router represented by the filled
circle will produce the associated λ.

Modalities can be associated with individual named at-
tributes of a signature. Using BGP as an example, the
locpref attribute is an example of a local modality — the
receiver of the route attaches the label. On the other hand,
med is an example of Figure 7(b), called a peer modality

— the sender of a route attaches the label. The aspath at-
tribute is built up from AS numbers that are configured at
each node, and as with med, the sender attaches the label.
However, in this case we will insist that the sender uses the
same AS number for all of its BGP sessions, and we call this
a peer nodal modality. The origin attribute provides an ex-
ample of the local nodal modality — the label is local, but
the same value must be used in all sessions. Other modalities
are also useful. For example, the constant modality (always
use a fixed label), and the default modality (which label to
use when one is not supplied by configuration).

7. DISCUSSION AND OPEN PROBLEMS
We are currently implementing a metarouting prototype

in the XORP system, which will be described elsewhere. We

are implementing two distinct approaches. In the first ap-
proach, we simply “hijack” BGP. Additional (optional) at-
tributes are defined for updates, which are sufficiently rich
in structure that they can be used to describe routes for any
routing algebras defined in RAML. The particular algebra
being used by an operator is defined in the router’s configu-
ration file and then bound to the appropriate BGP peering
sessions. At session initiation, capabilities negotiation in-
cludes a check that the same algebra is being used on each
end of the session. Of course users are then restricted to
using the hard-state, path-vector mechanism of BGP. Our
second approach is a bit more ambitious — it will allow users
to select not only the routing policy language, but to select
mechanisms from a collection of link-state and path-vector
implementations and then bind these to routing adjacencies.

The routing algebra metalanguage (RAML) presented in
this paper does not represent the only possible choice of base
algebras and algebraic operators. Our main design concerns
were the ability to express most interesting routing protocols
while at the same time retaining the ability to automatically
derive monotonicity properties for each algebraic expression
in the language. This raises many interesting research ques-
tions. For example, is there a natural set of base algebras and
operators? We would also like to explore RAML operators
that preserve the isotonicity properties required of algebras
that use a generalized version Dijkstra’s algorithm. We sus-
pect that a deeper understanding of the semantics of routing
policy metalanguages is required for exploring this and re-
lated questions. Intuition suggests that the more expressive
an RAML is, the more difficult it will be to automatically
determine such global properties (see also [8]).

The RAML should probably include a means of abstrac-
tion over algebras having a specified monotonicity property.
For example, we defined the BGP routing algebra as

BGPA = EBGPA ⊗ IBGPA,

but we imagine the IBGP component does not actually have
to be a part of the global protocol definition. That is, BGP’s
policy component could be specified as

BGPA(B : SM) = EBGPA ⊗ B,

where B is a variable ranging over all SM routing algebras
— each network could potentially instantiate BGP with a
different IBGP.

We have used lexicographic preference on products, but
other approaches may prove useful as well. It is interesting
to compare the algebra

add(1, n) ⊗ width(m),

with the (default) policy of EIGRP [23]. In both cases signa-
tures are pairs of the form 〈d, b〉, were d represents distance
and b represents bandwidth, and ⊕ is defined as

〈d1, b1〉 ⊕ 〈d2, b2〉 = 〈d1 + d2, min(b1, b2)〉
However, our definition uses lexical ordering while EIGRP
computes a derived weight, d+k/b, for each signature 〈d, b〉
(k is a configured constant). If the first component, d, is
strictly greater than zero, then the algebra is SM, and if
the first component can be zero then the algebra is only M
(see [25] for another discussion of EIGRP). It may be pos-
sible to extend RAML with product signatures that do not
use lexical preference, but instead base preference on poly-
nomial expressions (as with EIGRP). The difficulty seems



to be finding the right combination of polynomial opera-
tors that lend themselves well to an automatic derivation of
monotonicity preservation properties.

Routing security is another possible extension to RAML.
Security-related extensions to BGP have been defined in
SBGP [16]. We feel these are needed extensions, but they
are being integrated into monolithic protocol implementa-
tions that provide for little or no reuse between protocols.
Can generic security-related operators be added to RAML
in such a way that certain security properties can be guar-
anteed for routing?

Algebraic frameworks other than that of [25] may provide
foundations for other RAML-like languages. The algebras
of [25] have a right-associative ⊕ operator, which is well
suited for complex policies for path-vector protocols. Per-
haps left-associative algebras may prove useful in modeling
reservation-based and source-based routing protocols.

We have applied RAML operators at the level of rout-
ing algebras, but we believe that operators at the protocol

level are actually needed to model some protocols and pro-
tocol interactions. For example, If RP A = 〈A, MA〉 and
RP B = 〈B, MB〉 are two routing protocols (ignoring la-
bel modalities). Then the disjunction operator ¢ extends
naturally to the protocol level,

〈A, MA〉 ¢t 〈B, MB〉 = 〈A ¢t B, MA?MB〉.
The ? here suggests that some means for combining mech-
anisms in a consistent way needs to be worked out. Put
another way, we can think of this combination as defining a
single protocol. To treat this in full detail seems to require
that protocol instances, the FIB, and the FIB manager be
brought into our formal model. Then we would think of the
preference relation at the FIB-manager level as modeling
what is usually called administrative distance between rout-
ing protocols. In fact, we believe this is the most promising
approach to modeling a protocol such as OSPF. We would
like to declare OSPF with a specification something like this,

OSPF = 〈areas, path-vector〉 ¯ 〈add(1, 232), link-state〉,
where the algebra areas could be defined as fm(lp(2)) ⊗
add(1, 3) (the first component enforces a simple hierarchy,
while the second restricts path lengths to length at most
3). As mentioned in Section 3, an OSPF signature can be
modeled as a pair, 〈α, d〉, where α contains area information
and d represents distance.
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