Network traffic: Scaling

Ways of representing a time series

Timeseries

Timeseries: information in time domain

Ways of representing a time series

Timeseries: information in time domain

FFT: information in frequency (scale) domain

Ways of representing a time series

Timeseries: information in time domain

FFT: information in frequency (scale) domain

Wavelets: information in time and scale domains

Wavelet Coefficients: Local averages and differences

Intuition:

- Finest scale:
 - Compute averages of adjacent data points
 - Compute differences between average and actual data
- Next scale:
 - Repeat based on averages from previous step

Use wavelet coefficients to study scale or frequency dependent properties

Wavelet example

Wavelets

FFT: decomposition in frequency domain

Wavelets: localize a signal in both time and scale

Wavelets

 $\begin{array}{c} \text{Wavelet} \\ \text{coefficients } d_{j,k} \end{array}$

Discrete wavelet transform

Definition:

- From 1D to 2D: $X \leftrightarrow \{d_{j,k} : j \in Z, k \in Z\}$
- Wavelet coefficients at scale j and time 2^jk

$$d_{j,k} = \int X(s)\Psi_{j,k}(s)ds, \quad j \in \mathbb{Z}, k \in \mathbb{Z}$$

- Wavelets: $\Psi_{j,k}(t) = 2^{-j/2} \Psi(2^{-j}t k)$
- Wavelet decomposition: $X(t) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} d_{j,k} \Psi_{j,k}(t)$

Global scaling analysis

Methodology: Exploit properties of wavelet coefficients

Self-similarity: coefficients scale independent of k

$$d_{j,k} \approx 2^{j(1+2H)}$$
 for all j

Algorithm:

- Compute Discrete Wavelet Transform
- Compute energy of wavelet coefficients at each scale

$$\log_2 E_j = \log_2(\frac{1}{N_j} \sum_k |d_{j,k}|^2) \approx -j(1+2H)$$

- Plot log₂ E versus scale j
- Identify scaling regions, break points, etc.
- Hurst parameter estimation

Ref: AV IEEE Transactions on Information Theory 1998

Motivation

Scaling

How does traffic behave at different aggregation levels

Large time scales: User dynamics => self-similarity

- Users act mostly independent of each other
- Users are unpredictable: Variability in
 - Variability in doc size, # of docs, time between docs

Small time scales: Network dynamics

- Network protocols effects: TCP flow control
- Queue at network elements: delay
- Influences user experience

How do they interact????

Global scaling analysis (large scales)

$$Energy_{j} = \frac{1}{N_{i}} \sum_{k} \left| d_{j,k} \right|^{2}$$

- □ Trivial global scaling == horizontal slope (large scales)
- Non-trivial global scaling == slope > 0.5 (large scales)

Global scaling analysis (large scales)

$$Energy_{j} = \frac{1}{N_{i}} \sum_{k} \left| d_{j,k} \right|^{2}$$

- □ Trivial global scaling == horizontal slope (large scales)
- Non-trivial global scaling == slope > 0.5 (large scales)

Self-similar traffic

Self-similar traffic

Adding periodicity

- □ Packets arrive periodically, 1 pkt/2³ msec
- Coefficients cancel out at scale 4

Effect of Periodicity

Actual traffic: Different time periods

Actual traffic: different subnets

A simple topology

Impact of RTT on global scaling

- Workload
 - Web (Pareto dist.)
- □ Network
- Vetwork ○Single RTT delay
 - Examples
 - scale 15 (24 ms)
 - scale 10 (1.3 s)

Impact of RTT on global scaling

- Workload
 - Web (Pareto dist.)
- □ Network

66.000

16.000

4.100

1.000

Link delay: z = 640ms Link delay: z = 1ms

Dip at smallest time scale bigger than RTT

A more complex topology

Impact of different RTTs on global scaling

- Network variability (delay) => wider dip
- Self-similar scaling breaks down for small scales

A more complex topology

Impact of different bottlenecks on global scaling

- Network variability (delay) => wider dip
- Network variability (congestion) => wider dip
- Simulation matches traces without explicit modeling

Impact of different bottlenecks on global scaling

- Network variability (delay) => wider dip
- Network variability (congestion) => wider dip
- Simulation matches traces without explicit modeling

Impact of different bottlenecks on global scaling

- Network variability (delay) => wider dip
- Network variability (congestion) => wider dip
- Simulation matches traces without explicit modeling

Small-time scaling - multifractal

Wavelet domain:

Self-Similarity: coefficients scale independent of k

Multifractal: scaling of coefficients depends on k

local scaling is time dependent

Time domain:

Traffic rate process at time t₀ is:

of packets in $[t_0, t_0 + \delta t]$

Self-Similarity: traffic rate is like $(\delta t)^H$

Multifractal: traffic rate is like $(\delta t)^{\alpha(t_0)}$

Conclusion

Scaling

- Large time scales: self-similar scaling
 - User related variability
- Small time scales: multifractal scaling
 - Network variability
 - Topology
 - TCP-like flow control
 - TCP protocol behavior (e.g., Ack compression)

Summary

- Identified how IP traffic dynamics are influenced by
 - User variability, network variability, protocol variant
- Scaling phenomena
 - Self-similar scaling, breakpoints, multifractal scaling
- Physical understanding guides simulation setup
 - Moving towards right "ball park"
- Beware of homogeneous setups
 - Infinite source traffic models