<u>RIP</u> (Routing Information Protocol)

A Simple Distance Vector Routing Protocol

RIP (Routing Information Protocol)

Distance vector algorithm
Included in BSD-UNIX Distribution in 1982
Distance metric: # of hops (max = 15 hops)

From router A to subsets:

<u>destination</u>	<u>hops</u>
u	1
V	2
W	2
Х	3
У	3
Z	2

RIP advertisements

- Distance vectors: exchanged among neighbors every 30 sec via Response Message (also called advertisement)
- Each advertisement: List of up to 25 destination nets within AS

<u>RIP: example routing and forwarding</u> table in node D

routing table in router D

destination subnet	next router	# hops to dest
W	A	2
у	В	2
Z	В	7
X		1

RIP: example

RIP: Link failure and recovery

If no advertisement heard after 180 sec, neighbor/link declared dead

- Routes via the neighbor are invalidated
- New advertisements sent to neighbors
- Neighbors in turn send out new advertisements (if their tables changed)
- Link failure info quickly propagates to entire net
- Poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)
 - Advertise an infinite metric for a route on the interface over which it was received

RIP-v2 Format

RIP transported over UDP on well-known port 520.

RIP table processing

- RIP routing tables managed by an application process [Unix: route-d (daemon)]
- Advertisements encapsulated in UDP packets (no reliable delivery required)
- Advertisements are periodically repeated

RIP table example

Router: giroflee.eurocom.fr

Destination	Gateway	Flags	Ref	Use	Interface
127.0.0.1	127.0.0.1	UH	0	26492	100
192.168.2.	192.168.2.5	U	2	13	fa0
193.55.114.	193.55.114.6	U	3	58503	le0
192.168.3.	192.168.3.5	U	2	25	qaa0
224.0.0.0	193.55.114.6	U	3	0	le0
default	193.55.114.129	UG	0	143454	

- Three attached class C networks (LANs)
- Router only knows routes to attached LANs
- Default router used to "go up"
- Route multicast address: 224.0.0.0
- Loopback interface

How to avoid Count-to-Infinity

Split Horizon

- Don't advertise a route for an interface on which it was received
- Split Horizon with Poisoned Reverse
 - Put an infinite metric on routes out the interface on which is was received
- Triggered Updates
 - After metric change: Send update immediately
- Holddown Timer (Cisco)
 - After invalidation of route:
 - For some seconds ignore all updates for route

Summary: Routing tasks for RIP

- Neighbor?
 - Discovery
 - Maintenance
- Database?
 - Granularity
 - Maintenance updates
 - Synchronization
- Routing table?
 - O Metric
 - Calculation
 - O Update