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Do IP networks manage themselves? 

 In some sense, yes: 

 TCP senders send less traffic during congestion 

 Routing protocols adapt to topology changes 

 But, does the network run efficiently? 

 Congested link when idle paths exist? 

 High-delay path when a low-delay path exists? 

 How should routing adapt to the traffic? 

 Avoiding congested links in the network 

 Satisfying application requirements (e.g., delay) 

… essential questions of traffic engineering 



Traffic engineering 

What is traffic engineering? 

 Control and optimization of routing, to steer traffic 
through the network in the most effective way 

 Two fundamental approaches to adaptation 

 Adaptive routing protocols 

• Distribute traffic and performance measurements 

• Compute paths based on load, and requirements 

 Adaptive network-management system  

• Collect measurements of traffic and topology 

• Optimize the setting of the “static” parameters 

 Big debates still today about the right answer 



Outline: Three alternatives 

 Load-sensitive routing at packet level 

 Routers receive feedback on load and delay 

 Routers re-compute their forwarding tables  

 Fundamental problems with oscillation 

 Load-sensitive routing at circuit level 

 Routers receive feedback on load and delay 

 Router compute a path for the next circuit 

 Less oscillation, as long as circuits last for a while 

 Traffic engineering as a management problem 
 Routers compute paths based on “static”  values 

 Network management system sets the parameters 

 Acting on network-wide view of traffic and topology 



Load-sensitive routing protocols: 
Pros and Cons 

 Advantages 

 Efficient use of network resources 

 Satisfying the performance needs of end users 

 Self-managing network takes care of itself 

 Disadvantages 

 Higher overhead on the routers 

 Long alternate paths consume extra resources 

 Instability from reacting to out-of-date information 



Packet-based load-sensitive routing 

 Packet-based routing 

 Forward packets based on forwarding table 

 Load-sensitive 

 Compute table entries based on load or delay 

Questions 

 What link metrics to use? 

 How frequently to update the metrics? 

 How to propagate the metrics? 

 How to compute the paths based on metrics? 



Original ARPANET algorithm (1969) 

 Routing algorithm 

 Shortest-path routing based on link metrics 

 Instantaneous queue length plus a constant 

 Distributed shortest-path algorithm (Bellman-Ford) 
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Performance of original ARPANET algo 

 Light load 
 Delay dominated by the constant part 

(transmission delay and propagation delay) 

Medium load 
 Queuing delay is no longer negligible 

 Moderate traffic shifts to avoid congestion 

 Heavy load 
 Very high metrics on congested links 

 Busy links look bad to all of the routers 

 All routers avoid the busy links 

 Routers may send packets on longer paths 



Second ARPANET algorithm (1979) 

 Averaging of the link metric over time 

 Old: Instantaneous delay fluctuates a lot 

 New: Averaging reduces the fluctuations 

 Link-state protocol 

 Old: Distributed path computation leads to loops 

 New: Better to flood metrics and have each router 
compute the shortest paths 

 Reduce frequency of updates 

 Old: Sending updates on each change is too much 

 New: Send updates if change passes a threshold 



Problem of long alternate paths 

 Picking alternate paths 

 Long path chosen by one router consumes 
resource that other packets could have used 

 Leads other routers to pick other alternate paths 

 Solution: Limit path length 

 Bound the value of the link metric 

 “This link is busy enough to go two extra hops” 

 Extreme case 

 Limit path selection to shortest paths 

 Pick the least-loaded shortest path in the network 



Problem of out-of-date information 

 Routers make decisions based on old information 

 Propagation delay in flooding link metrics 

 Thresholds applied to limit number of updates 

 Old information leads to bad decisions 

 All routers avoid the congested links 

 … leading to congestion on other links 

 … and the whole things repeats 

Lincoln Tunnel 

Holland Tunnel 

NJ NYC 

“Backup at Lincoln” on radio triggers congestion at Holland 



Avoiding oscillations from out-of-date info 

 Send link metrics more often 

 But, leads to higher overhead 

 But, propagation delay is a fundamental limit 

Make the traffic last longer 

 Circuit switching: Phone network 

• Average phone call last 3 minutes 

• Plenty of time for feedback on link loads 

 Packet switching: Internet 

• Data packet is small (e.g., 1500 bytes or less) 

• But, feedback on link metrics also sent via packets 

• Better to make decisions on groups of packets 

 



Quality-of-Service  
routing on circuits 



Quality-of-Service routing  
with circuit switching 

 Traffic performance requirement 

 Guaranteed bandwidth b per connection 

 Link resource reservation 

 Reserved bandwidth ri  on link I 

 Capacity ci on link i  

 Signaling: Admission control on path P 
 Reserve bandwidth b on each link i on path P 

 Block: if (ri+b>ci) then reject (or try again) 

 Accept: else ri = ri + b 

 Routing: Ingress router selects the path 



Source-directed QoS routing 

 New connection with b =3 
 Routing: Select path with available resources 

 Signaling: Reserve bandwidth along the path (r = r +3) 

 Forwarding: Forward data packets along the selected path 

 Teardown: Free the link bandwidth (r =r -3) 

b=3 



QoS routing: Path selection 

 Link-state advertisements 
 Advertise available bandwidth (ci – ri ) on link i 

• E.g., every T seconds, independent of changes 

• E.g., when metric changes beyond threshold 

 Each router constructs view of topology 

 Path computation at each router 
 E.g., Shortest widest path 

• Consider paths with largest value of mini(ci-ri)  

• Tie-break on smallest number of hops 

 E.g., Widest shortest path 
• Consider only paths with minimum hops 

• Tie-break on largest value of mini(ci-ri) over paths 



How to get IP packets on to circuits? 

Who initiates the circuit? 
 End system application or operating system? 

 Edge router? 

 Edge router can infer the need for a circuit 
 Match on packet header bits 

• E.g., source, destination, port numbers, etc. 

 Apply policy for picking bandwidth parameters 
• E.g., Web connections get 10 Kbps, video gets 2 Mbps 

 Trigger establishment of circuit for the traffic 
• Select path based on load and requirements 

• Signal creation of the circuit 

• Tear down circuit after an idle period 

 



Grouping IP packets into flows 

 Group packets with the “same” end points 
 Application level: single TCP connection 

 Host level: single source-destination pair 

 Subnet level: single source prefix and dest prefix 

 Group packets that are close together in time 
 E.g., 60-sec spacing between consecutive packets 

flow 1 flow 2 flow 3 flow 4 



But, staleness can still be a problem… 

 Link state updates 
 High update rate leads to high overhead 

 Low update rate leads to oscillation 

 Connections are too short 
 Average Web transfer is just 10 packets 

 Requires high update rates to ensure stability 

 Idea: QoS routing only for long transfers! 
 Small fraction of transfers are very large 

 … and these few transfers carry a lot of traffic 

 Forward most transfers on static routes 

 … and compute dynamic routes for long transfers 



Identifying the long transfers 

 A nice property of transfer sizes 

 Most transfers are short, but a few are very long 

 Distribution of transfer sizes is “heavy tailed” 

 A nice property of heavy tails 

 After you see 10 packets, it is likely a long transfer 

 Even the remainder of the transfer is long 

 Routing policy 

 Forward initial packets on the static default route 

 After seeing 10 packets, try to signal a circuit 

 Forward the remaining packets on the circuit 

 Avoids oscillation even for small update rates 

 http://www.cs.princeton.edu/~jrex/papers/sigcomm99.ps 



Ongoing work on QoS routing 

 Standards activity 

 Traffic-engineering extensions to the conventional 
routing protocols (e.g., OSPF and IS-IS) 

 Use of MPLS to establish the circuits over the links 

 New work on Path Computation Elements that 
compute the load-sensitive routes for the routers 

 Research activity 

 Avoid propagating dynamic link-state information 

 Based decisions based on past success or failure 

 Essentially inferring the state of the links  



Traffic engineering as a  
network-management problem 



Using traditional routing protocols 

 Routers flood information to learn topology 

 Determine “next hop” to reach other routers… 

 Compute shortest paths based on link weights 

 Link weights configured by network operator 
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Approaches for setting the link weights 

 Conventional static heuristics 

 Proportional to physical distance 

• Cross-country links have higher weights  

• Minimizes end-to-end propagation delay 

 Inversely proportional to link capacity 

• Smaller weights for higher-bandwidth links  

• Attracts more traffic to links with more capacity 

 Tune the weights based on the offered traffic 

 Network-wide optimization of the link weights  

 Directly minimizes metrics like max link utilization 



Measure, model, and control 

Topology/ 
Configuration 

Offered 
traffic 

Changes to 
the network 

Operational network 

Network-wide 
“what if” model 

measure 

control 



Traffic engineering in ISP backbone 

 Topology 
 Connectivity and capacity of routers and links 

 Traffic matrix 
 Offered load between points in the network 

 Link weights 
 Configurable parameters for routing protocol 

 Performance objective 
 Balanced load, low latency, service level 

agreements … 

Question: Given the topology and traffic 
matrix, which link weights should be used? 



Key ingredients of the approach 

 Instrumentation 

 Topology: monitoring of the routing protocols 

 Traffic matrix: fine-grained traffic measurement 

 Network-wide models 

 Representations of topology and traffic 

 “What-if” models of shortest-path routing 

 Network optimization 

 Efficient algorithms to find good configurations 

 Operational experience to identify key constraints  



Formalizing the optimization problem 

 Input: graph G(R,L) 
 R is the set of routers 

 L is the set of unidirectional links 

 cl is the capacity of link l 

 Input: traffic matrix 

 Mi,j is traffic load from router i to j 

Output: setting of the link weights 

 wl is weight on unidirectional link l 

 Pi,j,l is fraction of traffic from i to j traversing link l 



Multiple shortest paths with even splitting 
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Complexity of optimization problem 

 NP-complete optimization problem 

 No efficient algorithm to find the link weights 

 Even for simple objective functions 

What are the implications? 

 Have to resort to searching through weight 
settings 



Optimization based on local search 

 Start with an initial setting of the link weights 

 E.g., same integer weight on every link 

 E.g., weights inversely proportional to capacity 

 E.g., existing weights in the operational network 

 Compute the objective function 

 Compute the all-pairs shortest paths to get Pi,j,l 

 Apply the traffic matrix Mi,j to get link loads ul 

 Evaluate the objective function from the ul/cl 

 Generate a new setting of the link weights 

repeat 



Incorporating operational realities 

Minimize number of changes to the network 

 Changing just 1 or 2 link weights is often enough 

 Tolerate failure of network equipment 

 Weights settings usually remain good after failure 

 … or can be fixed by changing one or two weights 

 Limit dependence on measurement accuracy 

 Good weights remain good, despite random noise 

 Limit frequency of changes to the weights 

 Joint optimization for day & night traffic matrices 



Application to AT&T’s backbone 

 Performance of the optimized weights 

 Search finds a good solution within a few minutes 

 Much better than link capacity or physical distance 

 Competitive with multi-commodity flow solution 

 How AT&T changes the link weights 

 Maintenance every night from midnight to 6am 

 Predict effects of removing link(s) from network 

 Reoptimize the link weights to avoid congestion  

 Configure new weights before disabling equipment 


