
Intradomain Traffic Engineering

slides by Jennifer Rexford

Do IP networks manage themselves?

 In some sense, yes:

 TCP senders send less traffic during congestion

 Routing protocols adapt to topology changes

 But, does the network run efficiently?

 Congested link when idle paths exist?

 High-delay path when a low-delay path exists?

 How should routing adapt to the traffic?

 Avoiding congested links in the network

 Satisfying application requirements (e.g., delay)

… essential questions of traffic engineering

Traffic engineering

What is traffic engineering?

 Control and optimization of routing, to steer traffic
through the network in the most effective way

 Two fundamental approaches to adaptation

 Adaptive routing protocols

• Distribute traffic and performance measurements

• Compute paths based on load, and requirements

 Adaptive network-management system

• Collect measurements of traffic and topology

• Optimize the setting of the “static” parameters

 Big debates still today about the right answer

Outline: Three alternatives

 Load-sensitive routing at packet level

 Routers receive feedback on load and delay

 Routers re-compute their forwarding tables

 Fundamental problems with oscillation

 Load-sensitive routing at circuit level

 Routers receive feedback on load and delay

 Router compute a path for the next circuit

 Less oscillation, as long as circuits last for a while

 Traffic engineering as a management problem
 Routers compute paths based on “static” values

 Network management system sets the parameters

 Acting on network-wide view of traffic and topology

Load-sensitive routing protocols:
Pros and Cons

 Advantages

 Efficient use of network resources

 Satisfying the performance needs of end users

 Self-managing network takes care of itself

 Disadvantages

 Higher overhead on the routers

 Long alternate paths consume extra resources

 Instability from reacting to out-of-date information

Packet-based load-sensitive routing

 Packet-based routing

 Forward packets based on forwarding table

 Load-sensitive

 Compute table entries based on load or delay

Questions

 What link metrics to use?

 How frequently to update the metrics?

 How to propagate the metrics?

 How to compute the paths based on metrics?

Original ARPANET algorithm (1969)

 Routing algorithm

 Shortest-path routing based on link metrics

 Instantaneous queue length plus a constant

 Distributed shortest-path algorithm (Bellman-Ford)

3

2

2

1

1

3

1

5

20
congested link

Performance of original ARPANET algo

 Light load
 Delay dominated by the constant part

(transmission delay and propagation delay)

Medium load
 Queuing delay is no longer negligible

 Moderate traffic shifts to avoid congestion

 Heavy load
 Very high metrics on congested links

 Busy links look bad to all of the routers

 All routers avoid the busy links

 Routers may send packets on longer paths

Second ARPANET algorithm (1979)

 Averaging of the link metric over time

 Old: Instantaneous delay fluctuates a lot

 New: Averaging reduces the fluctuations

 Link-state protocol

 Old: Distributed path computation leads to loops

 New: Better to flood metrics and have each router
compute the shortest paths

 Reduce frequency of updates

 Old: Sending updates on each change is too much

 New: Send updates if change passes a threshold

Problem of long alternate paths

 Picking alternate paths

 Long path chosen by one router consumes
resource that other packets could have used

 Leads other routers to pick other alternate paths

 Solution: Limit path length

 Bound the value of the link metric

 “This link is busy enough to go two extra hops”

 Extreme case

 Limit path selection to shortest paths

 Pick the least-loaded shortest path in the network

Problem of out-of-date information

 Routers make decisions based on old information

 Propagation delay in flooding link metrics

 Thresholds applied to limit number of updates

 Old information leads to bad decisions

 All routers avoid the congested links

 … leading to congestion on other links

 … and the whole things repeats

Lincoln Tunnel

Holland Tunnel

NJ NYC

“Backup at Lincoln” on radio triggers congestion at Holland

Avoiding oscillations from out-of-date info

 Send link metrics more often

 But, leads to higher overhead

 But, propagation delay is a fundamental limit

Make the traffic last longer

 Circuit switching: Phone network

• Average phone call last 3 minutes

• Plenty of time for feedback on link loads

 Packet switching: Internet

• Data packet is small (e.g., 1500 bytes or less)

• But, feedback on link metrics also sent via packets

• Better to make decisions on groups of packets

Quality-of-Service
routing on circuits

Quality-of-Service routing
with circuit switching

 Traffic performance requirement

 Guaranteed bandwidth b per connection

 Link resource reservation

 Reserved bandwidth ri on link I

 Capacity ci on link i

 Signaling: Admission control on path P
 Reserve bandwidth b on each link i on path P

 Block: if (ri+b>ci) then reject (or try again)

 Accept: else ri = ri + b

 Routing: Ingress router selects the path

Source-directed QoS routing

 New connection with b =3
 Routing: Select path with available resources

 Signaling: Reserve bandwidth along the path (r = r +3)

 Forwarding: Forward data packets along the selected path

 Teardown: Free the link bandwidth (r =r -3)

b=3

QoS routing: Path selection

 Link-state advertisements
 Advertise available bandwidth (ci – ri) on link i

• E.g., every T seconds, independent of changes

• E.g., when metric changes beyond threshold

 Each router constructs view of topology

 Path computation at each router
 E.g., Shortest widest path

• Consider paths with largest value of mini(ci-ri)

• Tie-break on smallest number of hops

 E.g., Widest shortest path
• Consider only paths with minimum hops

• Tie-break on largest value of mini(ci-ri) over paths

How to get IP packets on to circuits?

Who initiates the circuit?
 End system application or operating system?

 Edge router?

 Edge router can infer the need for a circuit
 Match on packet header bits

• E.g., source, destination, port numbers, etc.

 Apply policy for picking bandwidth parameters
• E.g., Web connections get 10 Kbps, video gets 2 Mbps

 Trigger establishment of circuit for the traffic
• Select path based on load and requirements

• Signal creation of the circuit

• Tear down circuit after an idle period

Grouping IP packets into flows

 Group packets with the “same” end points
 Application level: single TCP connection

 Host level: single source-destination pair

 Subnet level: single source prefix and dest prefix

 Group packets that are close together in time
 E.g., 60-sec spacing between consecutive packets

flow 1 flow 2 flow 3 flow 4

But, staleness can still be a problem…

 Link state updates
 High update rate leads to high overhead

 Low update rate leads to oscillation

 Connections are too short
 Average Web transfer is just 10 packets

 Requires high update rates to ensure stability

 Idea: QoS routing only for long transfers!
 Small fraction of transfers are very large

 … and these few transfers carry a lot of traffic

 Forward most transfers on static routes

 … and compute dynamic routes for long transfers

Identifying the long transfers

 A nice property of transfer sizes

 Most transfers are short, but a few are very long

 Distribution of transfer sizes is “heavy tailed”

 A nice property of heavy tails

 After you see 10 packets, it is likely a long transfer

 Even the remainder of the transfer is long

 Routing policy

 Forward initial packets on the static default route

 After seeing 10 packets, try to signal a circuit

 Forward the remaining packets on the circuit

 Avoids oscillation even for small update rates

 http://www.cs.princeton.edu/~jrex/papers/sigcomm99.ps

Ongoing work on QoS routing

 Standards activity

 Traffic-engineering extensions to the conventional
routing protocols (e.g., OSPF and IS-IS)

 Use of MPLS to establish the circuits over the links

 New work on Path Computation Elements that
compute the load-sensitive routes for the routers

 Research activity

 Avoid propagating dynamic link-state information

 Based decisions based on past success or failure

 Essentially inferring the state of the links

Traffic engineering as a
network-management problem

Using traditional routing protocols

 Routers flood information to learn topology

 Determine “next hop” to reach other routers…

 Compute shortest paths based on link weights

 Link weights configured by network operator

3

2

2

1

1

3

1

4

5

3

Approaches for setting the link weights

 Conventional static heuristics

 Proportional to physical distance

• Cross-country links have higher weights

• Minimizes end-to-end propagation delay

 Inversely proportional to link capacity

• Smaller weights for higher-bandwidth links

• Attracts more traffic to links with more capacity

 Tune the weights based on the offered traffic

 Network-wide optimization of the link weights

 Directly minimizes metrics like max link utilization

Measure, model, and control

Topology/
Configuration

Offered
traffic

Changes to
the network

Operational network

Network-wide
“what if” model

measure

control

Traffic engineering in ISP backbone

 Topology
 Connectivity and capacity of routers and links

 Traffic matrix
 Offered load between points in the network

 Link weights
 Configurable parameters for routing protocol

 Performance objective
 Balanced load, low latency, service level

agreements …

Question: Given the topology and traffic
matrix, which link weights should be used?

Key ingredients of the approach

 Instrumentation

 Topology: monitoring of the routing protocols

 Traffic matrix: fine-grained traffic measurement

 Network-wide models

 Representations of topology and traffic

 “What-if” models of shortest-path routing

 Network optimization

 Efficient algorithms to find good configurations

 Operational experience to identify key constraints

Formalizing the optimization problem

 Input: graph G(R,L)
 R is the set of routers

 L is the set of unidirectional links

 cl is the capacity of link l

 Input: traffic matrix

 Mi,j is traffic load from router i to j

Output: setting of the link weights

 wl is weight on unidirectional link l

 Pi,j,l is fraction of traffic from i to j traversing link l

Multiple shortest paths with even splitting

0.5

0.5

0.5

0.5

0.25
0.25

0.25
0.25 1.0

1.0

Values of Pi,j,l

Complexity of optimization problem

 NP-complete optimization problem

 No efficient algorithm to find the link weights

 Even for simple objective functions

What are the implications?

 Have to resort to searching through weight
settings

Optimization based on local search

 Start with an initial setting of the link weights

 E.g., same integer weight on every link

 E.g., weights inversely proportional to capacity

 E.g., existing weights in the operational network

 Compute the objective function

 Compute the all-pairs shortest paths to get Pi,j,l

 Apply the traffic matrix Mi,j to get link loads ul

 Evaluate the objective function from the ul/cl

 Generate a new setting of the link weights

repeat

Incorporating operational realities

Minimize number of changes to the network

 Changing just 1 or 2 link weights is often enough

 Tolerate failure of network equipment

 Weights settings usually remain good after failure

 … or can be fixed by changing one or two weights

 Limit dependence on measurement accuracy

 Good weights remain good, despite random noise

 Limit frequency of changes to the weights

 Joint optimization for day & night traffic matrices

Application to AT&T’s backbone

 Performance of the optimized weights

 Search finds a good solution within a few minutes

 Much better than link capacity or physical distance

 Competitive with multi-commodity flow solution

 How AT&T changes the link weights

 Maintenance every night from midnight to 6am

 Predict effects of removing link(s) from network

 Reoptimize the link weights to avoid congestion

 Configure new weights before disabling equipment

