
Intradomain Traffic Engineering

slides by Jennifer Rexford

Do IP networks manage themselves?

 In some sense, yes:

 TCP senders send less traffic during congestion

 Routing protocols adapt to topology changes

 But, does the network run efficiently?

 Congested link when idle paths exist?

 High-delay path when a low-delay path exists?

 How should routing adapt to the traffic?

 Avoiding congested links in the network

 Satisfying application requirements (e.g., delay)

… essential questions of traffic engineering

Traffic engineering

What is traffic engineering?

 Control and optimization of routing, to steer traffic
through the network in the most effective way

 Two fundamental approaches to adaptation

 Adaptive routing protocols

• Distribute traffic and performance measurements

• Compute paths based on load, and requirements

 Adaptive network-management system

• Collect measurements of traffic and topology

• Optimize the setting of the “static” parameters

 Big debates still today about the right answer

Outline: Three alternatives

 Load-sensitive routing at packet level

 Routers receive feedback on load and delay

 Routers re-compute their forwarding tables

 Fundamental problems with oscillation

 Load-sensitive routing at circuit level

 Routers receive feedback on load and delay

 Router compute a path for the next circuit

 Less oscillation, as long as circuits last for a while

 Traffic engineering as a management problem
 Routers compute paths based on “static” values

 Network management system sets the parameters

 Acting on network-wide view of traffic and topology

Load-sensitive routing protocols:
Pros and Cons

 Advantages

 Efficient use of network resources

 Satisfying the performance needs of end users

 Self-managing network takes care of itself

 Disadvantages

 Higher overhead on the routers

 Long alternate paths consume extra resources

 Instability from reacting to out-of-date information

Packet-based load-sensitive routing

 Packet-based routing

 Forward packets based on forwarding table

 Load-sensitive

 Compute table entries based on load or delay

Questions

 What link metrics to use?

 How frequently to update the metrics?

 How to propagate the metrics?

 How to compute the paths based on metrics?

Original ARPANET algorithm (1969)

 Routing algorithm

 Shortest-path routing based on link metrics

 Instantaneous queue length plus a constant

 Distributed shortest-path algorithm (Bellman-Ford)

3

2

2

1

1

3

1

5

20
congested link

Performance of original ARPANET algo

 Light load
 Delay dominated by the constant part

(transmission delay and propagation delay)

Medium load
 Queuing delay is no longer negligible

 Moderate traffic shifts to avoid congestion

 Heavy load
 Very high metrics on congested links

 Busy links look bad to all of the routers

 All routers avoid the busy links

 Routers may send packets on longer paths

Second ARPANET algorithm (1979)

 Averaging of the link metric over time

 Old: Instantaneous delay fluctuates a lot

 New: Averaging reduces the fluctuations

 Link-state protocol

 Old: Distributed path computation leads to loops

 New: Better to flood metrics and have each router
compute the shortest paths

 Reduce frequency of updates

 Old: Sending updates on each change is too much

 New: Send updates if change passes a threshold

Problem of long alternate paths

 Picking alternate paths

 Long path chosen by one router consumes
resource that other packets could have used

 Leads other routers to pick other alternate paths

 Solution: Limit path length

 Bound the value of the link metric

 “This link is busy enough to go two extra hops”

 Extreme case

 Limit path selection to shortest paths

 Pick the least-loaded shortest path in the network

Problem of out-of-date information

 Routers make decisions based on old information

 Propagation delay in flooding link metrics

 Thresholds applied to limit number of updates

 Old information leads to bad decisions

 All routers avoid the congested links

 … leading to congestion on other links

 … and the whole things repeats

Lincoln Tunnel

Holland Tunnel

NJ NYC

“Backup at Lincoln” on radio triggers congestion at Holland

Avoiding oscillations from out-of-date info

 Send link metrics more often

 But, leads to higher overhead

 But, propagation delay is a fundamental limit

Make the traffic last longer

 Circuit switching: Phone network

• Average phone call last 3 minutes

• Plenty of time for feedback on link loads

 Packet switching: Internet

• Data packet is small (e.g., 1500 bytes or less)

• But, feedback on link metrics also sent via packets

• Better to make decisions on groups of packets

Quality-of-Service
routing on circuits

Quality-of-Service routing
with circuit switching

 Traffic performance requirement

 Guaranteed bandwidth b per connection

 Link resource reservation

 Reserved bandwidth ri on link I

 Capacity ci on link i

 Signaling: Admission control on path P
 Reserve bandwidth b on each link i on path P

 Block: if (ri+b>ci) then reject (or try again)

 Accept: else ri = ri + b

 Routing: Ingress router selects the path

Source-directed QoS routing

 New connection with b =3
 Routing: Select path with available resources

 Signaling: Reserve bandwidth along the path (r = r +3)

 Forwarding: Forward data packets along the selected path

 Teardown: Free the link bandwidth (r =r -3)

b=3

QoS routing: Path selection

 Link-state advertisements
 Advertise available bandwidth (ci – ri) on link i

• E.g., every T seconds, independent of changes

• E.g., when metric changes beyond threshold

 Each router constructs view of topology

 Path computation at each router
 E.g., Shortest widest path

• Consider paths with largest value of mini(ci-ri)

• Tie-break on smallest number of hops

 E.g., Widest shortest path
• Consider only paths with minimum hops

• Tie-break on largest value of mini(ci-ri) over paths

How to get IP packets on to circuits?

Who initiates the circuit?
 End system application or operating system?

 Edge router?

 Edge router can infer the need for a circuit
 Match on packet header bits

• E.g., source, destination, port numbers, etc.

 Apply policy for picking bandwidth parameters
• E.g., Web connections get 10 Kbps, video gets 2 Mbps

 Trigger establishment of circuit for the traffic
• Select path based on load and requirements

• Signal creation of the circuit

• Tear down circuit after an idle period

Grouping IP packets into flows

 Group packets with the “same” end points
 Application level: single TCP connection

 Host level: single source-destination pair

 Subnet level: single source prefix and dest prefix

 Group packets that are close together in time
 E.g., 60-sec spacing between consecutive packets

flow 1 flow 2 flow 3 flow 4

But, staleness can still be a problem…

 Link state updates
 High update rate leads to high overhead

 Low update rate leads to oscillation

 Connections are too short
 Average Web transfer is just 10 packets

 Requires high update rates to ensure stability

 Idea: QoS routing only for long transfers!
 Small fraction of transfers are very large

 … and these few transfers carry a lot of traffic

 Forward most transfers on static routes

 … and compute dynamic routes for long transfers

Identifying the long transfers

 A nice property of transfer sizes

 Most transfers are short, but a few are very long

 Distribution of transfer sizes is “heavy tailed”

 A nice property of heavy tails

 After you see 10 packets, it is likely a long transfer

 Even the remainder of the transfer is long

 Routing policy

 Forward initial packets on the static default route

 After seeing 10 packets, try to signal a circuit

 Forward the remaining packets on the circuit

 Avoids oscillation even for small update rates

 http://www.cs.princeton.edu/~jrex/papers/sigcomm99.ps

Ongoing work on QoS routing

 Standards activity

 Traffic-engineering extensions to the conventional
routing protocols (e.g., OSPF and IS-IS)

 Use of MPLS to establish the circuits over the links

 New work on Path Computation Elements that
compute the load-sensitive routes for the routers

 Research activity

 Avoid propagating dynamic link-state information

 Based decisions based on past success or failure

 Essentially inferring the state of the links

Traffic engineering as a
network-management problem

Using traditional routing protocols

 Routers flood information to learn topology

 Determine “next hop” to reach other routers…

 Compute shortest paths based on link weights

 Link weights configured by network operator

3

2

2

1

1

3

1

4

5

3

Approaches for setting the link weights

 Conventional static heuristics

 Proportional to physical distance

• Cross-country links have higher weights

• Minimizes end-to-end propagation delay

 Inversely proportional to link capacity

• Smaller weights for higher-bandwidth links

• Attracts more traffic to links with more capacity

 Tune the weights based on the offered traffic

 Network-wide optimization of the link weights

 Directly minimizes metrics like max link utilization

Measure, model, and control

Topology/
Configuration

Offered
traffic

Changes to
the network

Operational network

Network-wide
“what if” model

measure

control

Traffic engineering in ISP backbone

 Topology
 Connectivity and capacity of routers and links

 Traffic matrix
 Offered load between points in the network

 Link weights
 Configurable parameters for routing protocol

 Performance objective
 Balanced load, low latency, service level

agreements …

Question: Given the topology and traffic
matrix, which link weights should be used?

Key ingredients of the approach

 Instrumentation

 Topology: monitoring of the routing protocols

 Traffic matrix: fine-grained traffic measurement

 Network-wide models

 Representations of topology and traffic

 “What-if” models of shortest-path routing

 Network optimization

 Efficient algorithms to find good configurations

 Operational experience to identify key constraints

Formalizing the optimization problem

 Input: graph G(R,L)
 R is the set of routers

 L is the set of unidirectional links

 cl is the capacity of link l

 Input: traffic matrix

 Mi,j is traffic load from router i to j

Output: setting of the link weights

 wl is weight on unidirectional link l

 Pi,j,l is fraction of traffic from i to j traversing link l

Multiple shortest paths with even splitting

0.5

0.5

0.5

0.5

0.25
0.25

0.25
0.25 1.0

1.0

Values of Pi,j,l

Complexity of optimization problem

 NP-complete optimization problem

 No efficient algorithm to find the link weights

 Even for simple objective functions

What are the implications?

 Have to resort to searching through weight
settings

Optimization based on local search

 Start with an initial setting of the link weights

 E.g., same integer weight on every link

 E.g., weights inversely proportional to capacity

 E.g., existing weights in the operational network

 Compute the objective function

 Compute the all-pairs shortest paths to get Pi,j,l

 Apply the traffic matrix Mi,j to get link loads ul

 Evaluate the objective function from the ul/cl

 Generate a new setting of the link weights

repeat

Incorporating operational realities

Minimize number of changes to the network

 Changing just 1 or 2 link weights is often enough

 Tolerate failure of network equipment

 Weights settings usually remain good after failure

 … or can be fixed by changing one or two weights

 Limit dependence on measurement accuracy

 Good weights remain good, despite random noise

 Limit frequency of changes to the weights

 Joint optimization for day & night traffic matrices

Application to AT&T’s backbone

 Performance of the optimized weights

 Search finds a good solution within a few minutes

 Much better than link capacity or physical distance

 Competitive with multi-commodity flow solution

 How AT&T changes the link weights

 Maintenance every night from midnight to 6am

 Predict effects of removing link(s) from network

 Reoptimize the link weights to avoid congestion

 Configure new weights before disabling equipment

