Malicious Activity and Risky Behavior in Residential Networks

<u>Gregor Maier</u>¹, Anja Feldmann¹, Vern Paxson^{2,3}, Robin Sommer^{2,4}, Matthias Vallentin³

^I TU Berlin / Deutsche Telekom Laboratories

- ² International Computer Science Institute (ICSI)
- ³ University of California, Berkeley
- ⁴ Lawrence Berkeley National Laboratories (LBNL)

Introduction

- Common perception: Residential users responsible for much of insecurity
- Even worse in developing regions
- But: Few systematic studies to date
- We undertake such a study
- Also important: What influences security?
 - o Anti-virus
 - o Software updates
 - Risky behavior (requesting blacklistes URLs)

Outline

- Data sets and vantage points
- Methodology
- Security awareness and risky behavior
- Malicious activity
- Discussion & Conclusion

Outline

Data sets and vantage points

- o European ISP
- o AirJaldi network in India
- o Lawrence Berkeley Lab
- o Data annotations
- Methodology
- Security awareness and risky behavior
- Malicious activity
- Discussion & Conclusion

Data sets: European ISP

- Major ISP in Europe
- Observations from 20,000 DSL customers
- All data immediately anonymized
- □ 14 day observation period
- No traffic shaping or port filters
- □ Traffic makeup:
 - o More than 50% HTTP
 - o Peer-to-Peer around 15%
 - NNTP also significant

Data sets: AirJaldi in India

- Community network in rural India
- I0,000 users; several 1,000 machines
- □ All share 10Mbps uplink
- □ 400 wireless routers, spread over 80km radius
- Use "layered NAT" approach => Cannot identify individual hosts
- □ 3 traces, 34-40hrs each
- □ Traffic makeup:
 - o 56—72% HTTP
 - Quite some VoIP and instant messenger traffic
 - o Almost no Peer-to-Peer or NNTP

Data sets: LBNL

- Lawrence Berkeley National Lab, CA, USA
- I 2,000 hosts
- □ 4 day observation period; 7,000 hosts active
- Open network policy but
- □ Security staff:
 - o Uses Bro IDS
 - o Infected machines are taken offline immediately
- >We do not expect any/much malicious activity

Data annotation

- Want to know more about DSL-lines
- Identify influences on security
- Is NAT used? How many hosts are connected
- □ How active are they?
 - o Group by number of HTTP request
 - Classify into high/medium/low activity
- Operating systems
 - Are Macs more secure?
 - o Identify by HTTP user-agent string
 - o Check DSL lines with only Macs (and no Windows)

Outline

Data sets and vantage points

Methodology

- o Scanning
- o Spamming
- o Known malware families
- o Generic NIDS
- o Security awareness and risky behavior
- Security awareness and risky behavior
- Malicious activity
- Discussion & Conclusion

Finding Scanners (I)

- Problem: NIDS are tuned to find incoming scans
 - Often use threshold of unsuccessful connections per source
- We want outgoing scans but
 - Scan traffic embedded in benign activity
 - o Cannot use simple threshold
- Idea (borrowed from TRW scan detector)
 - Ratio of successful connections / all connections per <DSL-line, remote-IP> pair
 - o Does it work?

Rer iii

Finding Scanners (2) Histogram: Success ratio per pair

Malicious Activity and Risky Behavior in Residential Networks

Finding Scanners (3)

Next step: classify pair as successful or unsuccessful

Count #successful VS. #unsuccessful pairs per DSL-line

Finding Scanners (4)

- Where's the problem?
- Peer-to-Peer (P2P) protocols
 - o Peer tries to contact peers' IPs
 - o But peer might be offline now or moved to other IP
 - Many unsuccessful connections
 - But not only filesharing, WoW also uses P2P protocol for maps
- Solution: Look only for suspicious / dangerous ports
 - o E.g., windows SMB, databases, VNC, remote desktop

Finding Scanners (5)

□ #successful VS. #unsuccessful for suspicious ports

Malicious Activity and Risky Behavior in Residential Networks

Finding Spammers

- U We omit the details for brevity
- □ Similar idea to scanning:
 - Count number of contacted SMTP servers
- □ DSL lines contact <<25 or >> 100 SMTP servers
 - ➢Use cutoff of 100 for spam classification

Malware families

- Use network signatures of known malware
- Conficker
 - o Tries to resolve known DNS names
- Zlob
 - o Changes DNS resolvers
 - o Targets Macs and Windows

Zeus

Tries to resolve DNS names of C&C servers
 Domain names from blacklist

Generic NIDS

- Use Snort with Emerging Threads rulesets
- □ 3,500 rules (but undocumented)
- I million alarms per day, 90% of DSL lines
 >Unuseable
- Includes everything
 - Adware: users might have installed them on purpose
 - o "Spyware": includes Alexa toolbar, but Alexa clearly states what it does
 - o etc.
 - Excluded those

Generic NIDS (2)

Relin

- □ Still too many hits :-(
- □ Lack of documentation ⇒ Cannot tell:
 - o How bad traffic triggering a specific rule is
 - o False positives
- E.g., signatures for botnet command & control:
 - Check for single or double-letter URL parameters (b=..., tm=...)
 - o Many benign websites use them too
- Conclusion
 - Emerging threads might be useful for small networks with strict policies but for our case
 - o Document rules!!!!

Security awareness & risky behavior

Security awareness

- Do user use/update anti-virus software?
- Do user update operating systems?
- Detecting by inspecting HTTP user-agents
- Risky behavior
 - o Do users request URLs blacklisted by Google Safe Browsing?
 - We update our blacklist copy every 25 minutes
- Again: this helps to find factors influencing security problems

Methodology summary

- Behaviroal metrics
 - o Scanning
 - o Spamming
- Malware families
 - o Conficker
 - o Zlob
 - o Zeus
- Generic NIDS (Snort with Emerging Threads)
 - o Unuseable
- Security awareness and risky behavior

Outline

- Data sets and vantage points
- Methodology
- Security awareness and risky behavior
 - o Security awareness
 - o Google blacklist
 - Comparision with AirJaldi and LBNL
- Malicious activity
- Discussion & Conclusion

Security awareness

Malicious Activity and Risky Behavior in Residential Networks

Google blacklists

- Up to 4.4% of DSL-lines request blacklisted URL per day
- Over 14 days: 19% do so!!!
- Google blacklist integrated in many browsers
 - Were users warned by browser and ignored it?
 - o Google requires update every 30 min
 - Check whether same user-agent downloads blacklist and requests URL
 - o Result: mixed. Some were warned, but ignored it!!

Compare to AirJaldi and LBNL

🗖 AirJaldi

- o Cannot do per DSL-line or host (NAT hierachy)
- Fraction of requests for anti-virus and software updates similar
- Fraction of requests that are blacklisted similar
- LBNL:
 - o Less anti-virus and software updates
 - But central update servers at LBNL
 - Other OS mix
 - o Significantly less risky behavior

Outline

- Data sets and vantage points
- Methodology
- Security awareness and risky behavior
- Malicious activity
 - o General results
 - o Influences on malicious activity
 - o Malicious activity and Macs
 - o Comparison with AirJaldi and LBNL
- Discussion & Conclusion

Malicious activity

Malicious Activity and Risky Behavior in Residential Networks

Malicious activity (2)

- Malware families contribute most
 - Few DSL-lines scan or spam
- □ 44% of spammers active only single day
- 38% of Zeus lines only trigger single day
- Zlob active on 8.4 (10) days on average (median)
- Conficker active on 6.5 days mean, 6 median
- Most others around 4 days (mean) and 2-4 days median
- □ 92% of "bad" lines only trigger single metric
- We likely underestimate total

Influences on malicious activity

- No strong influence of anti-virus and OS updates
 - Prob. only 1.26% if not using anti-virus
- No strong influence of NAT
- □ A l%ittle influence of activity
 - o High activity: 4.08%
 - o Medium activity: 1.94%
 - Low activity: 0.46%
- Only slight influence of blacklist hits
 - o Prob. 3.19%. Less than high activity
 - Risky behavior does not impact infections much!

Malicious activity and Macs

- □ 2.7% of DSL-lines have only Macs
- □ Mac infections: 0.54% (compare to 1.23%)
- But only Zlob triggers
 - ➢No scanning, spamming, Conficker, Zeus on Macs
- □ 0.54% of Macs have Zlob, only 0.24% overall
- Mac not better than Windows
- Malware that targets Macs is successful!

Comparison with AirJaldi and LBNL

- No malicious activity at LBNL
 - o As we expected
 - o Scan and spam metrics trigger on
 - Benign mail server
 - Penetration testing hosts that scan
- 🗆 AirJaldi
 - o 180-260 active IPs per trace
 - Each IP can have I—I,000s of hosts
 - Cannot analyze per host (NAT)

ber lin

AirJaldi malicious activity

	AirJaldi 1				AirJaldi 2				AirJaldi 3				
IP 1	Hi	Zeı	J S AV	SW	Med	Zei	uS AV	SW	Hi	Ze	uS AV	SW	
	(Conficker(3)				Conficker(1)				Spam			
IP Z	Med		•	SW	Med		•	SW	Med	BLK	AV	SW	
IP 3										Sc	an		
	Med	BLK	AV	SW	Med		AV	SW	Hi	BLK	AV	SW	
IP 4	×				×				Spam				
IP 5					-	-				Sn	am	344	
							-						
IP 5			No ¹	t mi	ich i	malic	tiou	s ac	tivity				
IP 5			No ¹	t mu	ich i	malic	ciou	s ac	tivity	BLK Spa			
IP 5 IP 6		×		t mu	ich i sable	malic	ciou Euro	s ac	tivity n IS	PBLK			
IP 5 IP 6 IP 7		×	No Con	t mu npar	ich i rable	malic e to l	ciou Euro	s ac opea	tivity in IS	BLK Spa P ^{BLK}			
IP 5 IP 6 IP 7	Med	BLK	Not Con	t mu npar	ich i able	malic to l	Euro	s ac opea	tivity In IS	P BLK	am AV	SW	
IP 5 IP 6 IP 7 IP 8	Med	BLK	Not Con	t mu npar	able	malic e to BLK Spa	Eiou Euro	s ac		BLK BLK	am AV AV	SW	
IP 5 IP 6 IP 7 IP 8	Miea	BLK		t mu npar	able	malic e to BLK Spa BLK	Euro Av am Av	s ac opea sw	tivity n IS ^{⊢⊓}	P BLK BLK	AV AV	SW SVV SW	
IP 5 IP 6 IP 7 IP 8 IP 9	Med Hi	BLK BLK Confic	Not Con AV ker(1	t mu npar sw	able	to BLK BLK	Euro Av am Av	s ac opea sw		P BLK BLK	AV AV	SW SW SW	
IP 5 IP 6 IP 7 IP 8 IP 9	Miea Hi Hi	BLK BLK Confic	Not Con AV ker(1 AV	t mu npar sw sw	ICh I able HI Hi Med	malic e to BLK Spa BLK	Euro Av Av	s ac opea sw sw	tivity n IS ^{HI} Hi Med	P BLK BLK	AV AV AV	SW SVV SVV	
IP 5 IP 6 IP 7 IP 8 IP 9 IP 10	Med Hi Hi S	BLK BLK Confic pam?	Not Con AV ker(1 AV Sca	t mu npar sw sw	ICh I able Hi Hi Med	malic to BLK Spa BLK	Euro Av Av	s ac opea sw sw	tivity n IS ^{HI} Hi Med	P BLK BLK	AV AV AV	SW SVV SVV	
IP 5 IP 6 IP 7 IP 8 IP 9 IP 10	Med Hi Hi S	BLK BLK Confic pam? Sca	Not Con AV ker(1 AV Sca	t mu npar sw sw	ICh I able HI HI Med	malic e to BLK Spa BLK	Ciou Euro Av Av	s ac opea svv svv	tivity n IS ^{HI} Hi Med	BLK BLK	AV AV AV	SW SVV SVV	

Hi / Med = High / Medium Activity AV = anti-virus SW = software update BLK = Blacklist hit Shaded background = malicious activity

Outline

- Data sets and vantage points
- Methodology
- Security awareness and risky behavior
- Malicious activity
- Discussion & Conclusion

Discussion & Conclusion (I)

- We use behavioral metrics and malware signatures
- Confident that metrics find what they should
- Cannot know how much we miss
 - Lower bound
 - o Might be significant (e.g., most lines trigger I metric)
- Out approach mimics closely how security analysts work
 - o Deploy toolbox of orthogonal strategies
- Snort with emerging threads problematic
 - Many blacklists have similar problems

Discussion & Conclusion (2)

- Residential users do not spam or scan
 - Likely not infected with such malware
- Users are risk aware
 - o Anti-virus and software updates widespread
 - o Does not lower infection risk
- Users exhibit risky behavior
 - o Many request blacklisted URLs
 - o Does not affect infection risk by as much as one may assume
- Comparing to rural community network in India
 - Very similar in terms of malicious activity and risky behavior
 - o No infections at LBL and less risky behavior

Questions?

Malicious Activity and Risky Behavior in Residential Networks

35