
1

Network Security Standards

Key distribution
Kerberos
SSL/TLS

2

Many-to-Many Authentication

How do users prove their identities when
requesting services from machines on the network?

Users Servers

?

Naïve solution: every server knows every user’s password
❍  Insecure: compromise of one server is enough to compromise all users
❍  Inefficient: to change his password, user must contact every server

3

Key Distribution – Secret Keys

❒ What if there are millions of users and thousands
of servers?

❒  Could configure n2 keys for n users
❒  Better is to use a Key Distribution Center

❍  Everyone has one key
❍  The KDC knows them all
❍  The KDC assigns a key to any pair who need to talk

4

Goals
❒  Requirements:

❍  Security (sniffers and malicious users)
❍ Reliability
❍  Transparency

• Users should not be aware of authentication action
• Entering password is OK, if done rarely

❍  Scalability

❒  Threats:
❍ User impersonation:

•  can’t trust workstations to verify users’ identities

❍ Network address impersonation: Spoofing
❍  Eavesdropping, tampering and replay to gain

unauthorized access

5

Solution: trusted third party

User Servers

❒  Trusted authentication service on the network
❍  Knows all passwords, can grant access to any server
❍ Convenient, but also the single point of failure
❍ Requires high level of physical security

User requests ticket for some
service; proves his identity

User receives ticket

Ticket is used to access
desired network service

Knows all users’ and
servers’ passwords

6

Key Distribution – Secret Keys

Alice

KDC

Bob
A wants to talk to B

Randomly choose Kab

{“B”, Kab}Ka {“A”, Kab}Kb

{Message}Kab

7

A Common Variant

Alice
KDC

Bob
A wants to talk to B

Randomly choose Kab

{“B”, Kab}Ka ,{“A”, Kab}Kb

{“A”, Kab}Kb ,{Message}Kab

8

KDC Realms

❒  KDCs scale up to hundreds of clients, but not
millions

❒  There’s no one who everyone in the world is
willing to trust with their secrets

❒  KDC Realm: a KDC and the users of that KDC

9

KDC Realms

Interorganizational KDC

Lotus KDC SUN KDC MIT KDC

A B C D E F G

10

Interrealm KDCs

❒ How would you talk to someone in another realm?
❒ How would you know what realm?
❒ How would you know a path to follow?
❒ What can bad KDCs do?
❒ How do you know what path was used?
❒ Why do you care?

11

KDC Hierarchies

❒  In hierarchy, what can each compromised KDC
do?

❒ What would happen if root was compromised?
❒  If it’s not a name-based hierarchy, how do you

find a path?

12

What should a ticket look like?

User Server

❒  Ticket cannot include server’s plaintext password
❍ Otherwise, next time user will access server directly

without proving his identity to authentication service

❒  Solution: encrypt some information with a key
derived from the server’s password
❍  Server can decrypt ticket and verify information
❍ User does not learn server’s password

Ticket gives holder
access to a network service

13

What should a ticket include?

Server

Encrypted
ticket

Knows all users’ and
servers’ passwords

Encrypted
ticket

❒  User name
❒  Server name
❒  Address of user’s workstation

❍  Otherwise, a user on another workstation can steal the ticket
and use it to gain access to the server

❒  Ticket lifetime
❒  A few other things (e.g., session key)

User

14

How is authentication done?

Encrypted
ticket

User

Authentication server

Password

❒  Insecure: passwords are sent in plaintext
❍  Eavesdropper can steal the password and later

impersonate the user to the authentication server

❒  Inconvenient: need to send the password each
time to obtain the ticket for any network service
❍  Separate authentication for email, printing, etc.

15

Solution: Two-Step Authentication

Encrypted TGTicket
Joe the User

Key distribution
center (KDC)

USER=Joe; service=TGS

❒  Prove identity once to obtain special TGTicket
❍  Instead of password, use key derived from password

❒  Use TGT to get tickets for many network services

File server, printer,
other network services

Encrypted
service ticket

Ticket granting
service (TGS)

TGTicket

Encrypted
service ticket

16

Still Not Good Enough

❒  Ticket hijacking
❍ Malicious user may steal the service ticket of another

user on the same workstation and use it
•  IP address verification does not help

❍  Servers must be able to verify that the user who is
presenting the ticket is the same user to whom the
ticket was issued

❒  No server authentication
❍ Attacker may misconfigure the network so that he

receives messages addressed to a legitimate server
•  Capture private information from users and/or deny service

❍  Servers must prove their identity to users

17

Key management

❒ Where do keys come from?
❍  Symmetric Ciphers: Key Distribution Center (KDC)
❍ Why?

•  Shared key for any communication pair does not scale and is
cryptographically unwise – uses each key too much!

❒  Key lifetime / freshness?
❍  Long-lived key for authentication and session key

negotiation
❍  Short-lived key for transfer
❍ Why?

•  Long-lived keys are tempting/easy targets (stream ciphers!!!)
•  Compromised old keys

18

Needham-Schroeder Protocol (1978)

❒  Basis of Kerberos
❒  Relies on a key distribution centre (KDC)
❒  KDC is part of the trusted computing base

❍  Knows secret keys of
all participants

❍ Manages N keys
(instead of N(N−1)/2)

❒  Solves two key problems
❍ Distribution of

shared secret key
❍ Mutual authentication

“Are you who
you say you

are?”

“Are you who
you say you

are?”

19

Needham and Schroeder’s Protocol

Bob Alice
4. Ticket contains [K(A,B), A]K[B)

(i.e., encrypted with B’s secret key).
B decrypts it and sends A a unique ID
encrypted in K(A, B): [ID2]K(A,B)

4

3. A decrypts & sends ticket to B: ticket

3

5. A returns an agreed transformation of B’s ID
 encrypted with K(A,B): [ID2 - 1]K(A,B)

 Alices proves that she can read nounce

5

S: Key Distribution Centre, KDC

2. Ack of message ID; new key for A $ B: K(A,B);
ticket for B; encrypted with secret key of A:
[ID1, B, K(A,B), ticket]K(A)

2

1. A wants to talk to B;
sends info + nonce/ID:
A, B, ID1 1

20

Cryptographic protocol design is hard
❒  Bob never proved his identity to Alice
❒  If K(A,B) is compromised attacker can

impersonate Alice forever
❒ Denning and Sacco proposed a fix in 1981
❒  Needham found a flaw in their fix in 1994
❒  Another flaw found in public key version in 1995

(it is actually only a 3-message protocol)

❒  Cryptographic protocol design is hard!!!

21

Kerberos [RFC4120,NeumanTs’94]

❒  Kerberos: (“der Höllenhund”) The watch dog of Hades,
whose duty it was to guard the entrance – against whom
or what does not clearly appear; … it is known to have
had three heads …
 - Ambrose Bierce, The Enlarged Devil’s
Dictionary

❒ Designed to authenticate users to servers
❒  Users use their password to authenticate

themselves
❒  It is possible to protect the Kerberos server
❒  Assumption: The workstations have not been

tampered with!

22

Kerberos lingua

❒  Principles: Kerberos entity
❍ User or system service
❍  Triples: (primary name, instance, realm)

Realm: identifies Kerberos server
❍  Examples:

username@some.domain.name
somehost/lpr@other.domaim

❒  Tickets: cryptographically sealed messages with
session keys and identifiers
❍ Used to obtain a service

❒  Ticket-Granting ticket (TGT)
❍  Ticket to obtain other tickets

23

How Kerberos works

❒  Relies on
❍  Kerberos key distribution center (KDC)
❍  Ticket granting service (TGS)

❒  Users
❍ Have to present a ticket to obtain a service
❍ Request TGT from KDC via extended

Needham-Schroeder
(using their shared secret with the KDC)

❍ Request tickets from TGS via extended
Needham-Schroeder (using the TGT)

24

Kerberos picture

25

Symmetric keys in Kerberos

❒  Kc is long-term key for each client C
❍ Derived from user’s password
❍  Known to client and key distribution center (KDC)

❒  KTGS is long-term key of TGS
❍  Known to KDC and ticket granting service (TGS)

❒  Kv is long-term key of each service V
❍  Known to V and TGS; separate key for each service

❒  Kc,TGS is short-term key between C and TGS
❍ Created by KDC, known to C and TGS

❒  Kc,v is short-term key between C and V
❍ Created by TGS, known to C and V

26

“Single logon” authentication

User C

❒  Client only needs to obtain TGTicket once (say, every morning)
❍  Ticket is encrypted; client cannot forge it or tamper with it

kinit program (client)
Key Distribution
Center (KDC)

password IDc , IDTGS , timec

EncryptKc(Kc,TGS , IDTGS , timeKDC ,
 lifetime , ticketTGS)

Kc

Convert into
client master key

Key = Kc

Key = KTGS TGS

…

All users must
pre-register their
passwords with KDC

Fresh key to be used
between client and TGS

Decrypts with
Kc and
obtains
Kc,TGS and
ticketTGS

EncryptKTGS(Kc,TGS , IDc , Addrc ,
 IDTGS , timeKDC , lifetime)
Client will use this unforgeable ticket to
get other tickets without re-authenticating

27

Obtaining a service ticket

❒  Client uses TGTicket to obtain a service ticket and a short-term key
for each network service
❍  One encrypted, unforgeable ticket per service (printer, email, etc.)

Client Ticket Granting
Service (TGS)

usually lives inside KDC

System command,
e.g. “lpr –Pprint”

IDv , ticketTGS , authC

EncryptKc,TGS(Kc,v , IDv , timeTGS ,
 ticketv)

Fresh key to be used
between client and service

Knows Kc,TGS
and ticketTGS

EncryptKc,TGS(IDc , Addrc , timec)
Proves that client knows key Kc,TGS
contained in encrypted TGS ticket

EncryptKv(Kc,v , IDc , Addrc , IDv ,
 timeTGS , lifetime)
Client will use this unforgeable
ticket to get access to service V

Knows key Kv for
each service

User C

28

Obtaining service

❒  For each service request, client uses the short-term key for that
service and the ticket he received from TGS

Client

Server V

System command,
e.g. “lpr –Pprint”

ticketv , authC

EncryptKc,v(timec+1)

Knows Kc,v
and ticketv

EncryptKc,v(IDc , Addrc , timec)
Proves that client knows key Kc,v
contained in encrypted ticket

Authenticates server to client
Reasoning:

Server can produce this message only if he knows key Kc,v.

Server can learn key Kc,v only if he can decrypt service ticket.

Server can decrypt service ticket only if he knows correct key Kv.
If server knows correct key Kv, then he is the right server.

User C

29

Kerberos in large networks
❒ One KDC isn’t enough for large networks (why?)
❒  Network is divided into realms

❍  KDCs in different realms have different key databases
❒  To access a service in another realm, users

must …
❍ Get ticket for home-realm TGS from home-realm KDC
❍ Get ticket for remote-realm TGS from home-realm TGS

•  As if remote-realm TGS were just another network service

❍ Get ticket for remote service from that realm’s TGS
❍ Use remote-realm ticket to access service
❍ N(N−1)/2 key exchanges for full N-realm interoperation

30

Summary of Kerberos

31

Important ideas in Kerberos
❒  Use of short-term session keys

❍ Minimize distribution and use of long-term secrets;
only used to derive short-term session keys

❍  Separate short-term key for each user-server pair
•  But multiple user-server sessions reuse the same key!

❒  Proofs of identity are based on authenticators
❍ Client encrypts his identity, address and current time

using short-term session key
•  Also prevents replays (if clocks are globally synchronized)

❍  Server learns this key separately (via encrypted ticket
that client cannot decrypt) and verifies user’s identity

❒  Symmetric cryptography only

32

Problematic issues
❒  Password dictionary attacks on client master keys
❒  Ticket cache security
❒  Subverted login command
❒  Replay of authenticators

❍  5-minute lifetimes long enough for replay
❍  Timestamps assume global, secure synchronized clocks
❍  Challenge-response would be better

❒  Same user-server key used for all sessions
❒  Homebrewed mode of cipher encryption

❍  Tries to combine integrity check with encryption

❒  Extraneous double encryption of tickets
❒  No ticket delegation

❍  Printer cannot fetch email from server on your behalf

33

Kerberos Version 5

❒  Better user-server authentication
❍  Separate subkey for each user-server session instead of

re-using the session key contained in ticket
❍ Authentication via subkeys, not timestamp increments

❒  Authentication forwarding
❍  Servers can access other servers on user’s behalf

❒  Realm hierarchies for inter-realm authentication
❒  Richer ticket functionality
❒  Explicit integrity checking + standard CBC mode
❒ Multiple encryption schemes, not just DES

34

Practical Uses of Kerberos
❒  Email, FTP, network file systems and many other

applications have been kerberized
❍ Use of Kerberos is transparent for the end user
❍  Transparency is important for usability!

❒  Standard authentication for Windows (since W2K)
❒  Local authentication

❍  login and su in OpenBSD

❒  Authentication for network protocols
❍  rlogin, rsh, telnet, afs

❒  Secure windowing systems
❍  xdm, kx

35

SSL: Secure Sockets Layer
❒  Widely deployed

❍  Supported by almost all
Web browsers and servers

❍  https
❍  Lots $ spent over SSL

❒  Originally designed by
Netscape in 1993

❒  Proposed standard:
❍  TLS: transport layer security

(RFC 4346)

❒  Provides
❍  Confidentiality
❍  Integrity
❍  Authentication

❒  Original goals:
❍  Secure Web e-commerce

transactions
❍  Encryption (especially

credit-card numbers)
❍  Web-server authentication
❍  Optional client

authentication
❍  Minimum hassle for business

with new merchant

❒  Available to all TCP
applications
❍  Secure socket interface

36

SSL and TCP/IP

Application

TCP

IP

Normal Application

Application

SSL

TCP

IP

Application
 with SSL

❒  SSL provides application programming interface
(API) to applications

❒ Many SSL libraries/classes readily available,
including C, C++, Java, Perl, …

38

Toy SSL: a simple secure channel

❒ Handshake: Alice and Bob use their certificates
and private keys to authenticate each other and
exchange shared secret

❒  Key Derivation: Alice and Bob use shared secret
to derive set of keys

❒ Data Transfer: Data to be transferred is broken up
into a series of records

❒  Connection Closure: Special messages to securely
close connection

39

Toy: simple handshake

❒ MS = master secret
❒  EMS = encrypted master secret

hello

certificate

KB
+(MS) = EMS

40

Toy: key derivation

❒  Bad to use same key for >1 cryptographic op.
❍ Different keys for message authentication code (MAC)

and encryption

❒  Four keys:
❍  Kc = encryption key for data sent from client to server
❍ Mc = MAC key for data sent from client to server
❍  Es = encryption key for data sent from server to client
❍ Ms = MAC key for data sent from server to client

❒  Keys derived via key derivation function (KDF)
❍  Takes master secret and (possibly) some additional

random data and creates the keys

41

Recall MAC

m
es

sa
ge

H()

s

m
es

sa
ge

m
es

sa
ge

s

H()

compare

s = shared secret

❒  Recall that HMAC is a standardized MAC algorithm
❒  SSL uses a variation of HMAC
❒  TLS uses HMAC

42

Toy: data records
❒  Why not encrypt data in stream as we write it to TCP?

❍ Where to put MAC?
At end? No message integrity until all data processed.

❍  E.g.: instant messaging: how to do integrity check over
all bytes before displaying?

❒  Break stream in series of records
❍  Each record carries a MAC
❍ Receiver can act on each record as it arrives

❒  Issue for receiver: how to distinguish MAC from data
❍ Want to use variable-length records

length data MAC

43

Toy: sequence numbers

❒  Attacker can capture and replay record or
re-order records

❒  Solution: put sequence number into MAC:
❍ MAC = MAC(Mx, sequence||data)
❍  Sequence number serves as nonce for record
❍ Note: no sequence number field

❒  Attacker could still replay all of the records
❍ Use session nonce as well

44

Toy: control information

❒  Truncation attack:
❍ Attacker forges TCP connection close segment
❍ One or both sides thinks there is less data than there

actually is.

❒  Solution: record types, with special type for closure
❍  Type 0 for data; type 1 for closure

❒ MAC = MAC(Mx, sequence||type||data)

length type data MAC

45

Toy SSL: summary

hello

certificate, nonce

KB
+(MS) = EMS

type 0, seq 1, data
type 0, seq 2, data

type 0, seq 1, data

type 0, seq 3, data

type 1, seq 4, close

type 1, seq 2, close

en
cr

yp
te

d

bob.com

46

Toy SSL is not complete

❒ How long are the fields?
❒ What encryption protocols?
❒  No negotiation

❍ Allow support for different encryption algorithms
❍ Allow client and server to choose together specific

algorithm before data transfer

47

Most common symmetric ciphers in SSL

❒ DES – Data Encryption Standard: block
❒  3DES – Triple strength: block
❒  RC2 – Rivest Cipher 2: block
❒  RC4 – Rivest Cipher 4: stream

Public key encryption
❒  RSA

48

SSL cipher suite

❒  Cipher suite
❍  Public-key algorithm
❍  Symmetric encryption algorithm
❍ MAC algorithm

❒  SSL supports a variety of cipher suites
❒  Negotiation:

❍ Client offers choice; server picks one

49

Real SSL: handshake (1)

Purpose
1.  Server authentication
2.  Negotiation: agree on crypto algorithms
3.  Establish keys
4.  Client authentication (optional)

50

Real SSL: handshake (2)
1.  Client sends list of algorithms, along with client nonce
2.  Server chooses algorithms from list;

sends back: choice + certificate + server nonce
3.  Client verifies certificate,

extracts server’s public key,
generates pre_master_secret,
encrypts with server’s public key,
sends to server

4.  Client and server independently compute encryption and
MAC keys from pre_master_secret and nonces

5.  Client sends MAC of all handshake messages
6.  Server sends MAC of all handshake messages

51

Real SSL: handshaking (3)

Last 2 steps protect against tampering of handshake
❒  Client typically offers range of algorithms:

some strong, some weak
❒ Man-in-the middle can delete stronger algorithms
❒  Last 2 steps prevent this

❍ Note: last two messages are encrypted!

52

Handshake types
❒  All handshake messages (with SSL header)

have 1 byte type field: Types
❍ ClientHello
❍  ServerHello
❍ Certificate
❍  ServerKeyExchange
❍ CertificateRequest
❍  ServerHelloDone
❍ CertificateVerify
❍ ClientKeyExchange
❍  Finished

53

SSL record protocol

data

data
fragment

data
fragment MAC MAC

encrypted
data and MAC

encrypted
data and MAC

record
header

record
header

Record header: content type; version; length

MAC: includes sequence number, MAC key Mx

Fragment: each SSL fragment 214 bytes (~16 Kbytes)

54

SSL record format

content
type SSL version length

MAC

data

1 byte 2 bytes 2 bytes

Data and MAC encrypted (symmetric key algorithm)

55

Content types in record header

❒  Application_data
❒  Alert

❍  Signaling errors during handshake

❒ Handshake
❍  Initial handshake messages are carried in records of

type “handshake”
❍ Handshake messages in turn have their own types

❒  Change_cipher_spec
❍  Indicates change in encryption and authentication

algorithms

56

handshake: ClientHello

handshake: ServerHello

handshake: Certificate

handshake: ServerHelloDone

handshake: ClientKeyExchange
ChangeCipherSpec

handshake: Finished

ChangeCipherSpec

handshake: Finished

application_data

application_data

Alert: warning, close_notify

SSL: real
connection

TCP Fin follows

Everything
henceforth
is encrypted

57

Comments about trace messages

ClientHello
❒  Random: 32-byte nonce
ServerHello
❒  Cipher suite: RSA key

exchange, DES-CBC
message encryption, SHA
digest

❒  Random: 32-byte nonce
❒  Session_id: used for

session resumption

Certificate
❒  X.509 format
❒  Subject: company info
❒  Issuer: CA
❒  Certificate = public key
ClientKeyExchange
❒  Includes encrypted

PreMasterSecret
Finished
❒  MAC of concatenation of

handshake messages

58

Key derivation
❒  Client random, server random, and pre-master secret

input into pseudo random-number generator.
❍  Produces master secret

❒  Master secret, client and server random numbers into
another random-number generator
❍  Produces “key block”

❒  Key block sliced and diced:
❍  Client MAC key
❍  Server MAC key
❍  Client encryption key
❍  Server encryption key
❍  Client initialization vector (IV)
❍  Server initialization vector (IV)

59

SSL performance
❒  Recall: big-number operations in public-key crypto are

CPU intensive
❒  Server handshake

❍  Typically over half SSL handshake CPU time goes to RSA
decryption of the encrypted pre_master_secret

❒  Client handshake
❍  Public key encryption is less expensive
❍  Server is handshake bottleneck

❒  Data transfer
❍  Symmetric encryption
❍  MAC calculation
❍  Neither is as CPU intensive as public-key decryption

60

Session resumption
❒  Full handshake is expensive: CPU time
❒  If the client and server have already communicated once,

they can skip handshake and proceed directly to data
transfer
❍  Session caching
❍  For a given session, client and server store session_id,

master_secret, negotiated ciphers

❒  Client sends session_id in ClientHello
❒  Server then agrees to resume in ServerHello

❍  New key_block computed from master_secret and client and
server random numbers

61

Client authentication

❒  SSL can also authenticate client
❒  Server sends a CertificateRequest message to

client

62

Who issues Web certificates?

❒  Browser comes with list of built-in certificate
authorities

❒  Firefox: 138(?) certificate authorities!
❒ Do you trust them all to be honest and

competent?
❒ Do you even know them?

E.g.: Baltimore Cybertrust
❍  Sold its PKI in 2003
❍ What about the new owners?

63

Mountain America Credit Union

❒  Reputable CA issued certificate for Mountain
America

❒ DNS name: www.mountain-america.net
❒  Looks OK
❒  But „real“ site at www.mtnamerica.org

❒ Which site is intended by the user?

64

Technical attack
❒  Scenario:

❍ Usually: shoping via unencrypted pages
❍ Click on „Checkout“ (or „Login“ on bank Web site)
❍ Next page – downloaded without SSL protection – has

login link, which uses SSL

❒  Attack:
❍  Tamper with that page
❍ Will anyone notice
❍ Note some sites outsource payment processing!

65

SSL summary

❒  Cryptography itself seems correct
❍  Indeed is formally verified after many iterations

❒ Human factors are dubious
❒ Most users don‘t know what a certificate is, or

how to verify one
 Moreover: hard to know what it should say!

❒  No rational basis for deciding whether or not to
trust a CA

