direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Peer-to-Peer Computing

Peer-to-peer computing is an interesting networking paradigm as it offers a high degree of scalability by exploiting the resources of the participants and avoids single-points of failures. Due to these desirable properties, peer-to-peer computing plays a crucial role in many networking applications beyond file-sharing, and the underlying ideas are also discussed as a design principle for the future Internet. Our research is concerned with the question of whether peer-to-peer is mature enough to step outside its "comfort zone". We conduct measurements of state-of-the-art peer-to-peer networks such as Kad and investigate the robustness, e.g., to Sybil attacks or selfish behavior. For example, we implemented the proof-of-concept BitTorrent client "BitThief" which provides evidence that despite the tit-for-tat incentive mechanism, free-riding is possible in BitTorrent. We develop algorithms to improve the performance of peer-to-peer systems: we devise peer-to-peer networks which are robust to worst-case churn (see e.g., our IPTPS paper), which allow for efficient joins and leaves (see e.g., our SHELL system at ICALP), or which are robust to denial of service attacks (see e.g., our Chameleon system at SPAA). Some of these algorithms were successfully implemented in the online storage tool Wuala and the streaming tool Streamforge, two Swiss startups.

Selected Publications

Free Riding in BitTorrent is Cheap
Citation key LMSW-FRBC-06
Author Locher, Thomas and Moor, Patrick and Schmid, Stefan and Wattenhofer, Roger
Title of Book 5th Workshop on Hot Topics in Networks (HotNets)
Pages 85–90
Year 2006
Location Irvine, California, USA
Month November
Abstract While it is well-known that BitTorrent is vulnerable to selfish behavior, this paper demonstrates that even entire files can be downloaded without reciprocating at all in BitTorrent. To this end, we present BitThief, a free riding client that never contributes any real data. First, we show that simple tricks suffice in order to achieve high download rates, even in the absence of seeders. We also illustrate how peers in a swarm react to various sophisticated attacks. Moreover, our analysis reveals that sharing communities–-communities originally intended to offer downloads of good quality and to promote cooperation among peers–-provide many incentives to cheat.
Link to publication Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions