1 Pancake Graph

In the lecture, you have encountered several different graphs as underlying network structures, e.g. for peer-to-peer (P2P) networks. Here, we will look at the Pancake graph P_n.

Recall the definition of the pancake graph P_n is defined as follows: The vertex set is $V(P_n) = \{(v_1, v_2, \ldots, v_n) \mid v_i \in \{1, \ldots, n\} \text{ and } v_i \neq v_j \forall i \neq j\}$.

In other words, $V(P_n) = S_n$, the group of all permutations on n elements. There exists an edge of dimension i for $2 \leq i \leq n$ when

$$e_i = \{(v_1, \ldots, v_i, \ldots, v_n), (w_1, \ldots, w_i, \ldots, w_n)\} \in E(P_n) \iff w_j = v_{i-j+1} \text{ for } 1 \leq j \leq i \text{ and } w_j = v_j \text{ for } i < j \leq n,$$

or, we can say that an edge e_i represents a prefix reversal

$$(v_1, \ldots, v_i, v_{i+1}, \ldots, v_n) \leftrightarrow (v_1, \ldots, v_1, v_{i+1}, \ldots, v_n).$$

For the following questions, where appropriate, give your answers in terms of $N := |V(P_n)|$ (approximately), the number of vertices, as well as n.

a) Draw (nicely!) P_n for $n = 2, 3, 4$. Try to describe a pattern for drawing P_n for any n.

b) What is the degree of each vertex in P_n?

c) Can you give bounds on the diameter $D(P_n)$ of the pancake network?

d) Show that P_n is Hamiltonian for $n \geq 3$. (A Hamiltonian path is a path in a graph that visits each vertex exactly once. A Hamiltonian cycle is a Hamiltonian path which is a cycle. A graph is Hamiltonian if it contains a Hamiltonian cycle.)
