Data link layer

Goals:
- Principles behind data link layer services
 - Error detection, correction
 - Sharing a broadcast channel: Multiple access
 - Link layer addressing
 - Reliable data transfer, flow control: Done!
- Example link layer technology: Ethernet
Link layer services

Framing and link access

- Encapsulate datagram: Frame adds header, trailer
- Channel access – if shared medium
- Frame headers use ‘physical addresses’ = “MAC” to identify source and destination
 - Different from IP address!

Reliable delivery (between adjacent nodes)

- Seldom used on low bit error links
 (fiber optic, co-axial cable and some twisted pairs)
- Sometimes used on high error rate links
 (e.g., wireless links)
Link layer services (2.)

Flow Control
- Pacing between sending and receiving nodes

Error Detection
- Errors are caused by signal attenuation and noise.
- Receiver detects presence of errors signals sender for retrans. or drops frame

Error Correction
- Receiver identifies and corrects bit error(s) without resorting to retransmission

Half-duplex and full-duplex
- With half duplex, nodes at both ends of link can transmit, but not at same time
Multiple access links / protocols

Two types of “links”:

- **Point-to-point**
 - PPP for dial-up access
 - Point-to-point link between Ethernet switch and host

- **Broadcast** (shared wire or medium)
 - Traditional Ethernet
 - Upstream HFC
 - 802.11 wireless LAN
MAC protocols: Three broad classes

- **Channel Partitioning**
 - Divide channel into smaller “pieces” (time slots, frequency)
 - Allocate piece to node for exclusive use

- **Random Access**
 - Allow collisions
 - “Recover” from collisions
 - “Taking turns”
 - Tightly coordinate shared access to avoid collisions

Goal: Efficient, fair, simple, decentralized
Addresses

IP address (32-bit):
- Network-layer address
- Used to get datagram to destination network (recall IP network definition)

MAC (or LAN or physical or Ethernet) address:
- Data link-layer address
- Used to get datagram from one interface to another physically-connected interface (same network)
- 48 bit MAC address (for most LANs) burned in the adapter ROM
Addresses (2.)

Each adapter on LAN has unique LAN address

Broadcast address = FF-FF-FF-FF-FF-FF

LAN (wired or wireless)

1A-2F-BB-76-09-AD
71-65-F7-2B-08-53
58-23-D7-FA-20-B0
0C-C4-11-6F-E3-98

= adapter
Addresses (3.)

- MAC address allocation administered by IEEE
- Manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy:
 - MAC address: Like Social Security Number
 - IP address: Like postal address
- MAC flat address \Rightarrow portability
 - Can move LAN card from one LAN to another
- IP hierarchical address NOT portable
 - Depends on network to which one attaches
Example

Starting at A, given IP datagram addressed to B:
- Look up net. address of B, find B on same net. as A
- Link layer send datagram to B inside link-layer frame
ARP: Address Resolution Protocol

Question: how to determine MAC address of B knowing B’s IP address?

- Each IP node (Host, Router) on LAN has **ARP table**
- ARP Table: IP/MAC address mappings for some LAN nodes
 - `< IP address; MAC address; TTL>`
 - **TTL (Time To Live):** time after which address mapping will be forgotten (typically 20 min)
ARP Protocol: Same LAN (Network)

- A wants to send datagram to B, and B’s MAC address not in A’s ARP table.
- A broadcasts ARP query packet, containing B’s IP address
 - Dest MAC address = FF-FF-FF-FF-FF-FF
 - All machines on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - Frame sent to A’s MAC address (unicast)
- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - Soft state: information that times out (goes away) unless refreshed
- ARP is “plug-and-play”:
 - Nodes create their ARP tables without intervention from net administrator
Ethernet

“Dominant” LAN technology:
- Cheap $20 for 100Mbs!
- First widely used LAN technology
- Simpler, cheaper than token LANs and ATM
- Kept up with speed race: 10 Mbps – 10 Gbps
- Shared medium

Metcalfe’s Etheret sketch
Unreliable, connectionless service

- **Connectionless:**
 No handshaking between sending and receiving adapter.

- **Unreliable:**
 Receiving adapter does not send ACKs or NACKs to sending adapter
 - Stream of datagrams passed to network layer can have gaps
 - Gaps will be filled if app is using TCP
 - Otherwise, app will see the gaps
Ethernet uses CSMA/CD

- No slots
- Adapter does not transmit if it senses that some other adapter is transmitting, that is: **carrier sense**
- Transmitting adapter aborts when it senses that another adapter is transmitting, that is: **collision detection**

- Before attempting a retransmission, adapter waits a random time, that is: **random access**
Interconnecting LANs

Q: Why not just one big LAN?
- All stations must share bandwidth
- Limited cable length
- Large “collision domain” (can collide with many stations)
- Limited number of stations
Interconnecting with hubs

- Physical Layer devices:
 Essentially repeaters operating at bit levels:
 Repeat received bits on one interface to all other interfaces

- Hubs can be arranged in a hierarchy (or multi-tier design), with backbone hub at its top
Hubs (2.)

- Each connected LAN referred to as LAN segment
- Hubs do not isolate collision domains: Node may collide with any node residing at any segment in LAN
- Hub Advantages
 - Simple, inexpensive device
 - Multi-tier provides graceful degradation: portions of the LAN continue to operate if one hub malfunctions
 - Extends maximum distance between node pairs (100m per Hub)
Bridges (switches)

- **Link Layer devices**
 - Stores and forwards Ethernet frames
 - Examines frame header and *selectively* forwards frame based on MAC dst address
 - When frame is to be forwarded on segment, uses CSMA/CD to access segment

⇒ Bridge *isolates collision* domains: It buffers frames
Bridges/switch: Advantages

- Higher total max throughput
- No limit on number of nodes
- No limit on geographical coverage
- Can connect different Ethernet types (store and forward)
- Transparent: Hosts do not need to change LAN adapters
- Plug-and-play, self-learning
 - Switches do not need to be configured
Bridges/switch: Forwarding

- Forwarding:
 - To which LAN segment should a frame be forwarded?
 - Looks like a routing problem
Bridges/switch: Self learning

- A bridge/switch has a bridge/switch table
- Entry in table
 - (MAC Address, Interface, Time Stamp)
 - Stale entries in table dropped (TTL can be 60 min)
- Bridge *learns* which hosts can be reached through which interfaces
 - When frame received, switch “learns” location of sender: Incoming LAN segment
 - Records sender/location pair in bridge table
Bridges/switch: Filtering/forwarding

When switch receives a frame:

Index switch table using MAC dest address
if entry found for destination
 then{
 if dest on segment from which frame arrived
 then drop the frame
 else forward the frame on interface indicated
 }
else flood

forward on all but the interface on which the frame arrived
Switch: Traffic isolation

- Switch installation breaks subnet into LAN segments
- Switch filters packets:
 - Same-LAN-segment frames not usually forwarded onto other LAN segments
 - Segments become separate collision domains
Redundant networks

- Network with multiple paths
 - Alternate path for each source, destination pair

- Advantage
 - Increased reliability
 - Single network failure OK
 - More opportunities for load distribution

- Disadvantage
 - Added complexity
Bridges spanning tree

- Avoid cycles
 - Frames may multiply and forwarded forever
- Organize bridges into spanning tree
 - Disable a subset of interfaces
Bridges vs. Routers

- Both store-and-forward devices
 - Routers: Network layer devices (examine network layer headers)
 - Bridges/switches: Link layer devices

- Use tables
 - Routers: Routing tables via routing algorithms
 - Bridges: Filtering tables via filtering, learning, spanning tree algorithm
Bridges + and -

+ Simple operation
 Low processing bandwidth

- Restricted topologies:
 Spanning tree to avoid cycles

- Single broadcast domain
 No protection from broadcast storms
 (broadcasts will be forwarded by bridge)
Routers + and -

+ Arbitrary topologies
 Limited cycling (TTL and good routing protocols)
+ Firewalls protection
 Against broadcast storms
- Complex operation
 Require IP address configuration (not plug and play)
 Require higher processing bandwidth
Routers vs. Bridges

- **Bridges**
 - Good in small networks (few hundred hosts)

- **Routers**
 - Good in large networks (thousands of hosts)

- **Layer 3 switch**
 - Bridge + router (but usually limited routing table!)
Summary/comparison

<table>
<thead>
<tr>
<th></th>
<th>hubs</th>
<th>routers</th>
<th>switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic isolation</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>plug & play</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>optimal routing</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>cut through</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>