On the impact of variability on buffer dynamics in IP networks
Mechanism that create variability

- User behavior
 - Application level variability, e.g., Web
- Network characteristics
 - Different delays, round-trip time, cross traffic
- Feedback control
 - Reliability and adaptivity
Approach

- Study traces from simulations
 - Complete control over all aspects of network
 Workload model, Network model, Protocol
- Real network traces used as benchmark
 - Simulation setup and trace analysis
- Simulation traces used for trace driven simulation
 - Study queuing dynamic
- Correlation of analysis results to simulation setup
 - Identify network features that cause divergence
Outline

- Simulation setup
 - Workload model
 - Network
 - Protocol
- Impact of variability at the application layer
 - Mice vs. elephants [V. Jacobson]
- Impact of feedback
 - Open loop vs. closed loop
Workloads

- **No variability:**
 - Infinite sources
 - 50 clients requesting big files

- **High variability:**
 - Web sources
 - 350 clients downloading Web pages

- **Simulation:**
 - Client startup: random time 0-600 seconds
 - Duration: 4200 seconds
 - Analysis: 900-4200 seconds
High variability workload: Web

Parameters (similar to SURGE [BC98]):
- Number of clients, pages, objects, packets per object
- Time between Web pages, Web objects
A simple network topology

- Used to limit capacity: 1.5 Mbits to 3 Mbits
- Used to vary delay: 640 ms or 40 ms
- Used to measure before bottleneck

Clients

40-100 Kbits/second
TCP: Reliable byte stream

- Data segmented into segments
- Segments are acked by receiver (cumulative)
- Timer for every segment
- Segments retransmitted
 - Timer goes off
 - Four duplicate Acks received
- Flow control
 - Sliding window protocol avoids losses at receiver
 - Bandwidth limits impose congestion window
 - Slow start increases cwnd exponentially
 - Congestion avoidance increases cwnd linearly
 - Packet losses triggers congestion window changes
Elephants: Infinite sources

- Packet rate process and buffer occupancy process
 - Network round trip time 1.3 seconds
Elephants (cont.)

- Packet rate process and buffer occupancy process
 - Network round trip time 0.14 seconds
Mice and elephants: Web sources

- Significant portion of connections are short
Elephants vs. Mice

- No variability in workload and network
 - synchronization of packet rate process
 - synchronization of buffer occupancy process

- Mice stop synchronization
 - no apparent synchronization
 - higher packet arrival process
 - higher utilization
Effect of synchronization

- Percentage of connections with losses during ΔT

Infinite sources

Web sources
Effect of synchronization (cont.)

- Fractions of connections with losses in slow-start

Infinite sources

Web sources
Why mice eliminate synchronization

- Mice
 - Too short for feedback
 - TCP states non-synchronized
 - Arrival highly bursty
 - Large fraction in slow-start

- Elephant
 - Within two cycles losses for almost all connections
 - TCP states synchronized
 - Small percentage in slow start

- Consequence
 - # of burst losses larger for Web than Infinite srcs
Open loop vs. close loop

- Queuing system with finite buffer
 - Change in link capacity can be modeled by change of service time distribution
- A simple experiment
 - NS simulation with approx. finite buffer space (50 pkts)
 - Trace driven queuing analysis of G/D/1 queue with varying service times
- Evaluation
 - Set of ns-2 simulations with different bottleneck speeds
 - Calculate packet loss
 - Compare packet losses from simulations to packet loss predicted from open loop queue system
Open loop vs. close loop (cont.)

Web sources

Either extremely conservative or overly aggressive
Open loop assumptions

- Queuing system with infinite buffer
 - Buffer occupancy probability $P[Q > x]$ can approximate finite buffer packet loss

- A simple experiment
 - ns-2 simulation (approx. inf. buffer space 1000 pkts)
 - Trace analysis to calculate buffer occupancy

- Evaluation
 - Set of ns-2 simulations with different finite buffers
 - Compare packet losses to buffer occupancy

- Result:
 - $P[Q > x]$ extremely conservative
Conclusion

- Infinite source models and queue analysis provide necessary simplifications for
 - Analysis
 - Simulations

Challenge

- Address variability at
 - User level
 - Network level
- Judge the impact of feedback