Crypto Basics

Cryptography Overview
Public vs. Private Key Cryptography
Classical / ancient ciphers
Modern ciphers: DES
Modes of operation
Stream cipher: RC4
What is a cryptosystem?

- \(K = \{0,1\}^l \)
- \(P = \{0,1\}^m \)
- \(C' = \{0,1\}^n, C \mu C' \)

- \(E: P \subseteq K \rightarrow C \)
- \(D: C \subseteq K \rightarrow P \)

- \(\forall p \in P, k \in K: D(E(p,k),k) = p \)

- It is \textit{infeasible} to find inversion \(F: P \subseteq C \rightarrow K \)

\textit{Lets start again!}
This time in English
What is a cryptosystem?

- A pair of algorithms that take a key and convert plaintexts to ciphertexts and backwards later
 - Plaintext: text to be protected
 - Ciphertext: should appear like random

- Requires sophisticated math!
 - Do not try to design your own algorithms!
The language of cryptography

- **Symmetric or secret key crypto**: sender and receiver keys are identical and secret

- **Asymmetric or Public-key crypto**: encrypt key public, decrypt key secret
Attacks

- **Opponent whose goal is to break a cryptosystem is the adversary**
 - Assume adversary knows algorithm used, but not key

- **Three types of attacks:**
 - **ciphertext only:**
 - adversary has only ciphertext; goal is to find plaintext, possibly key
 - **known plaintext:**
 - adversary has ciphertext, corresponding plaintext; goal is to find key
 - **chosen plaintext:**
 - adversary may supply plaintexts and obtain corresponding ciphertext; goal is to find key
Basis for Attacks

- **Mathematical attacks**
 - Based on analysis of underlying mathematics

- **Statistical attacks**
 - Make assumptions about the distribution of letters, pairs of letters (digrams), triplets of letters (trigrams), etc.
 - Called *models of the language*
 - Examine ciphertext, correlate properties with the assumptions.
Example: Symmetric key cryptography

Substitution cipher: substituting one thing for another

- Monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghijklpoiuytrewq

E.g.: Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc
Monoalphabetic Cipher Security

- Total of $26! = 4 \times 10^{26}$ keys

- So many keys, might think is secure

- !!!WRONG!!!

- Problem is language characteristics
Language Redundancy and Cryptanalysis

- Human languages are redundant

- Eg "th lrd s m shphrd shll nt wnt"

- Letters are not equally commonly used

- In English E is by far the most common letter
 - followed by T,R,N,I,O,A,S

- Other letters like Z,J,K,Q,X are fairly rare

- Have tables of single, double & triple letter frequencies for various languages
English Letter Frequencies
Use in Cryptanalysis

- **Key concept**
 - monoalphabetic substitution ciphers do not change relative letter frequencies

- **Discovered by Arabian scientists in 9th century**

- **Calculate letter frequencies for ciphertext**

- **Compare counts/plots against known values**

- **For monoalphabetic must identify each letter**
 - tables of common double/triple letters help
Properties of a good cryptosystem

- **There should be no way short of enumerating all possible keys to find the key from any reasonable amount of ciphertext and/or plaintext, nor any way to produce plaintext from ciphertext without the key**

- **Enumerating all possible keys must be infeasible**

- **The ciphertext must be indistinguishable from true random values**
Milestones in modern cryptography

- 1883 Kerckhoffs’ principles
- 1917-1918 Vernam/Mauborgne cipher (one-time pad)
- 1920s-1940s Mathematicization and mechanization of cryptography and cryptanalysis
- 1973 U.S. National Bureau of Standards issues a public call for a standard cipher; this led to the adoption of the Data encryption Standard (DES)
Milestones in modern cryptography:

- **Merkle invents a public key distribution scheme**

- **1976: Diffie and Hellman invent public key encryption and digital signatures, but do not devise a suitable algorithms with all desired properties**

- **1977: Rivest, Shamir, and Adelman invent their algorithm RSA soon after**

- **1973: Clifford Cocks, a British mathematician working for the UK intelligence agency GCHQ, described an equivalent system in an internal document in 1973.**

 His discovery, however, was not revealed until 1997 due to its top-secret classification, and Rivest, Shamir, and Adleman devised RSA independently of Cocks' work.
Kerckhoffs’ law

- “The system must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience”

- In other words, the security of the system must rest entirely on the secrecy of the key not the algorithm itself
Vernam/Mauborgne cipher

- **Exclusive-OR a key stream tape with the plaintext**

- **Online encryption of teletype traffic, combined with transmission**

- For a **one-time pad** - which is provably secure - use true-random keying tapes and never reuse the keying material

- **Problem: how to get good long one-time pads**
 - Reuse of keying material → stream cipher
 - Key stream via algorithm → no one-time pad
Mathematicization and mechanization

- **Mechanical encryptors**
 (Vernam, Enigma, Hagelin, Scherbius)

- **Mathematical cryptanalysis**
 (Friedman, Rejewski et al., Bletchley Park)

- **Machine-aided cryptanalysis**
 (Friedman, Turing et al.)
Hagelin Rotor Machine
Standardized ciphers

- Until the 1970s, most strong ciphers were government secrets
- Spread of computers) new threats (Reportedly, soviets eavesdropped on U.S. grain negotiators’ conversations)
- NBS (now called NIST) issued public call for cipher; eventually IBM responded

) eventual result - via secret process - DES
What we have today

- **Encryption is completely computerized and operates on bits**

- **Basic primitives can be combined to produce powerful results**
 - Difficult to verify combined result.

- **Encryption is by far the strongest weapon of computer security**

- **Host and OS software is by far the weakest link**

- **Bad software breaks crypto - NEVER the cryptanalysis!**
Modern Block Ciphers

- Look at modern block ciphers
- One of the most widely used types of cryptographic algorithms
- Provides secrecy / authentication services
- Focus now on DES (Data Encryption Standard)
- Illustrate block cipher design principles
Block vs. Stream Ciphers

- **block ciphers process messages in blocks, each of which is then en/decrypted**

- **like a substitution on very big characters**
 - 64-bits or more

- **stream ciphers process messages a bit or byte at a time when en/decrypting**

- **many current ciphers are block ciphers**

- **broader range of applications**
Block Cipher Principles

- **most symmetric block ciphers are based on a so-called**
 - Feistel Cipher Structure

- **needed since must be able to decrypt ciphertext to recover messages efficiently**

- **block ciphers look like an extremely large substitution**

- **would need table of** 2^{64} **entries for a 64-bit block**

- **instead create from smaller building blocks**

- **using idea of a product cipher**
Ideal Block Cipher
Claude Shannon and Substitution-Permutation Ciphers

- *Claude Shannon introduced idea of substitution-permutation (S-P) networks in 1949 paper*

- *form basis of modern block ciphers*

- *S-P nets are based on the two primitive cryptographic operations seen before:*
 - substitution (S-box)
 - permutation (P-box)

- *provide confusion & diffusion of message & key*
Confusion and Diffusion

- *cipher needs to completely obscure statistical properties of original message*

- *a one-time pad does this*

- *more practically Shannon suggested combining S & P elements to obtain:*
 - diffusion - dissipates statistical structure of plaintext over bulk of ciphertext
 - confusion - makes relationship between ciphertext and key as complex as possible
Feistel Cipher Structure

- **Horst Feistel devised the feistel cipher**
 - based on concept of invertible product cipher

- **partitions input block into two halves**
 - process through multiple rounds which
 - perform a substitution on left data half
 - based on round function of right half & subkey
 - then have permutation swapping halves

- **implements Shannon’s S-P net concept**
Feistel Cipher Structure
Feistel Cipher Design Elements

- block size
- key size
- number of rounds
- subkey generation algorithm
- round function
- fast software en/decryption
- ease of analysis
Feistel Cipher Decryption
Data Encryption Standard (DES)

- most widely used block cipher in world
- adopted in 1977 by NBS (now NIST)
 - as FIPS PUB 46
- encrypts 64-bit data using 56-bit key
- has widespread use
- has been considerable controversy over its security
DES History

- **IBM developed Lucifer cipher**
 - by team led by Feistel in late 60’s
 - used 64-bit data blocks with 128-bit key

- *then redeveloped as a commercial cipher with input from NSA and others*

- **in 1973 NBS issued request for proposals for a national cipher standard**

- **IBM submitted their revised Lucifer which was eventually accepted as the DES**
DES Design Controversy

- although DES standard is public
- was considerable controversy over design
 - in choice of 56-bit key (vs Lucifer 128-bit)
 - and because design criteria were classified
- subsequent events and public analysis show in fact design was appropriate
- use of DES has flourished
 - especially in financial applications
 - still standardised for legacy application use
DES Encryption Overview
Initial Permutation IP

- first step of the data computation

- IP reorders the input data bits

- even bits to LH half, odd bits to RH half

- quite regular in structure (easy in h/w)

- example:

 \[
 IP(675a6967\ 5e5a6b5a) = (ffb2194d\ 004df6fb)
 \]
DES Round Structure

- **uses two 32-bit L & R halves**

- **as for any Feistel cipher can describe as:**

 \[L_i = R_{i-1} \]

 \[R_i = L_{i-1} \oplus F(R_{i-1}, K_i) \]

- **F takes 32-bit R half and 48-bit subkey:**

 - expands R to 48-bits using perm E
 - adds to subkey using XOR
 - passes through 8 S-boxes to get 32-bit result
 - finally permutes using 32-bit perm P
DES Round Structure
Substitution Boxes S

- **have eight S-boxes which map 6 to 4 bits**
- **each S-box is actually 4 little 4 bit boxes**
 - outer bits 1 & 6 (row bits) select one row of 4
 - inner bits 2-5 (col bits) are substituted
 - result is 8 lots of 4 bits, or 32 bits
- **row selection depends on both data & key**
 - feature known as autoclaving (autokeying)
- **example:**
 - $S(18 \ 09 \ 12 \ 3d \ 11 \ 17 \ 38 \ 39) = 5fd25e03$
DES Key Schedule

- **forms subkeys used in each round**
 - initial permutation of the key (PC1) which selects 56-bits in two 28-bit halves
 - 16 stages consisting of:
 - rotating **each half** separately either 1 or 2 places depending on the **key rotation schedule** K
 - selecting 24-bits from each half & permuting them by PC2 for use in round function F

- **note practical use issues in h/w vs. s/w**
DES Decryption

- **decrypt must unwind steps of data computation**

- **with Feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)**
 - IP undoes final FP step of encryption
 - 1st round with SK16 undoes 16th encrypt round
 -
 - 16th round with SK1 undoes 1st encrypt round
 - then final FP undoes initial encryption IP
 - thus recovering original data value
Avalanche Effect

- key desirable property of encryption alg

- where a change of one input or key bit results in changing approx half output bits

- making attempts to “home-in” by guessing keys impossible

- DES exhibits strong avalanche
Strength of DES – Key Size

- 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values

- brute force search looks hard

- recent advances have shown is possible
 - in 1997 on Internet in a few months
 - in 1998 on dedicated h/w (EFF) in a few days
 - in 1999 above combined in 22hrs!

- still must be able to recognize plaintext

- must now consider alternatives to DES – AES
Strength of DES – Analytic Attacks

- now have several analytic attacks on DES

- these utilise some deep structure of the cipher
 - by gathering information about encryptions
 - can eventually recover some/all of the sub-key bits
 - if necessary then exhaustively search for the rest

- generally these are statistical attacks

- include
 - differential cryptanalysis
 - linear cryptanalysis
 - related key attacks
Differential Cryptanalysis

- one of the most significant recent (public) advances in cryptanalysis

- known by NSA in 70's cf DES design

- Murphy, Biham & Shamir published in 90’s

- powerful method to analyse block ciphers

- used to analyse most current block ciphers with varying degrees of success

- DES reasonably resistant to it, cf. Lucifer
Differential Cryptanalysis

- A statistical attack against Feistel ciphers

- Uses cipher structure not previously used

- Design of S-P networks has output of function f influenced by both input & key

- Hence cannot trace values back through cipher without knowing value of the key

- Differential cryptanalysis compares two related pairs of encryptions
Differential Cryptanalysis
Compares Pairs of Encryptions

- with a known difference in the input

- searching for a known difference in output

- when same subkeys are used

\[
\Delta m_{i+1} = m_{i+1} \oplus m'_{i+1} \\
= [m_{i-1} \oplus f(m_i, K_i)] \oplus [m'_{i-1} \oplus f(m'_i, K_i)] \\
= \Delta m_{i-1} \oplus [f(m_i, K_i) \oplus f(m'_i, K_i)]
\]
Differential Cryptanalysis

- have some input difference giving some output difference with probability p

- if find instances of some higher probability input/output difference pairs occurring

- can infer subkey that was used in round

- then must iterate process over many rounds (with decreasing probabilities)
Differential Cryptanalysis

\[\Delta m_{i+1} \parallel \Delta m_i = 40 \ 08 \ 00 \ 00 \ 04 \ 00 \ 00 \ 00 \]

\[f(\Delta m_i) = 40 \ 08 \ 00 \ 00 \]

\[\Delta m_i = 04 \ 00 \ 00 \ 00 \]

\[p = 0.25 \]

\[\Delta m_{i+1} = 00 \ 00 \ 00 \ 00 \]

\[f(\Delta m_{i+1}) = 00 \ 00 \ 00 \ 00 \]

\[p = 1.0 \]

\[\Delta m_{i+2} = 04 \ 00 \ 00 \ 00 \]

\[f(\Delta m_{i+2}) = 40 \ 08 \ 00 \ 00 \]

\[\Delta m_{i+3} \parallel \Delta m_{i+2} = 40 \ 08 \ 00 \ 00 \ 04 \ 00 \ 00 \ 00 \]

\[p = 0.25 \]
Differential Cryptanalysis

- **perform attack by repeatedly encrypting plaintext pairs with known input XOR until obtain desired output XOR**

- **when found**
 - if intermediate rounds match required XOR have a right pair
 - if not then have a wrong pair

- **can then deduce keys values for the rounds**
 - right pairs suggest same key bits
 - wrong pairs give random values

- **for large numbers of rounds, probability is so low that more pairs are required than exist with 64-bit inputs**

- **Biham and Shamir have shown how a 13-round iterated characteristic can break the full 16-round DES**
Linear Cryptanalysis

- another recent development
- also a statistical method
- must be iterated over rounds, with decreasing probabilities
- developed by Matsui et al in early 90's
- based on finding linear approximations
- can attack DES with 2^{43} known plaintexts, easier but still in practise infeasible
Linear Cryptanalysis

- **find linear approximations with prob p \neq \frac{1}{2}**

 \[P[i_1, i_2, \ldots, i_a] \oplus C[j_1, j_2, \ldots, j_b] = K[k_1, k_2, \ldots, k_c] \]

 where \(i_a, j_b, k_c \) are bit locations in \(P, C, K \)

- **gives linear equation for key bits**

- **get one key bit using max likelihood alg**

- **using a large number of trial encryptions**

- **effectiveness given by:** \(|p-\frac{1}{2}| \)
DES Design Criteria

- as reported by Coppersmith in [COPP94]

- 7 criteria for S-boxes provide for:
 - non-linearity
 - resistance to differential cryptanalysis
 - good confusion

- 3 criteria for permutation P provide for:
 - increased diffusion
Block Cipher Design

- **basic principles still like Feistel’s in 1970’s**

- **number of rounds**
 - more is better, exhaustive search best attack

- **function f:**
 - provides “confusion”, is nonlinear, avalanche
 - have issues of how S-boxes are selected

- **key schedule**
 - complex subkey creation, key avalanche
How to use a block cipher

- **Direct use of a block cipher is inadvisable**
 - Enemy can build up "code book" of plaintext/ciphertext equivalents
 - Only works for messages that are a multiple of the block size

- **Solution: 5 standard modes of operation**
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Cipher Feedback (CFB)
 - Output Feedback (OFB)
 - Counter (CTR)
Codes vs. Ciphers

- **Ciphers** operate \textit{syntactically}, on elements of an alphabet (letters) or groups of “letters”: A ! D, B ! C, etc.

- **Codes** operate \textit{semantically}, on words, phrases, or sentences, e.g., per codebooks.
Electronic Code Book

- Direct use of block cipher
- Used primarily to transmit encrypted keys
- Very weak for general-purpose encryption
- Problem: block substitution attack
Cipher Block Chaining (CBC)

- **IV**: Initialization vector, **P**: plaintext, **C**: ciphertext

Diagram:

1. **IV** → Encrypt → **C₁**
2. **P₁** → Encrypt → **C₂**
3. **P₂** → Encrypt → **C₃**
4. **P₃** → Encrypt → **C₄**
Cipher Block Chaining

- **Properties of CBC**
 - Ciphertext of each encrypted block depends on the plaintext of all preceding blocks
 - Subsets of blocks appear valid and will decrypt properly
 - Message integrity has to be done otherwise

- **CBC and electronic voting**
 - [Kohno, Stubblefield, Rubin, Wallach]
 - Found in the source code for Diebold voting machines:
 - `DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data, totalSize, DESKEY, NULL, DES_ENCRYPT)`
ECB vs. CBC

AES in ECB mode

AES in CBC mode

Similar plaintext blocks produce similar ciphertext blocks (not good!)

[Picture due to Bart Preneel]
Information leakage in ECB mode

Wikipedia

Encrypt in ECB mode
n-Bit Cipher Feedback

- Add n-bit shift and move Encrypt operation before X-OR operator
- Retains some of the previous cycle’s ciphertext
- Copes gracefully with deletion of n-bit unit (bit errors)
n-Bit Output Feedback

- **No error propagation**
- **Active attacker can make controlled changes to plaintext**
- **OFB is a form of stream cipher**
Counter mode

- **Another form of stream cipher**
- **Counter often split in message and block number**
- **Active attack can make controlled changes to plaintext**
- **Highly parallelizable**
- **No linkage between stages**
- **Vital: Counter never to repeat**
Which mode for what task

- **General file or packet encryption:** CBC
 - Input must be padded to \(n \) cipher block size

- **Risk of byte or bit deletion:** CFB\(_8\) or CFB\(_1\)

- **Bit stream:** noisy line and error propagation is undesirable: OFB

- **Very high-speed data:** CTR

- **Needed in most situations:** integrity checks
 - Actually needed almost always
 - Attack on integrity \(\rightarrow \) attack on confidentiality
 - Solution: separate integrity check along with encryption
Stream ciphers

- **Operation:**
 - Key stream generator produces a sequence S of pseudo-random bytes
 - Key stream bytes are combined (usually via XOR) with plaintext bytes

- **Properties:**
 - Very good for asynchronous traffic
 - Best-known stream cipher RC4 (used, e.g., in SSL)
 - Key stream must never be reused for different plaintexts
RC4

- **Extremely efficient**
- **After key setup, it just produces a key stream**
- **Internal state: 256-byte array plus two integers**

For as many iterations as are needed, the RC4 modifies the state and outputs a byte of the keystream. In each iteration, it increments i, adds the value of S pointed to by i to j, exchanges the values of $S[i]$ and $S[j]$, and then outputs the value of S at the location $S[i] + S[j]$ (modulo 256). Each value of S is swapped at least once every 256 iterations.

- **No resynchronization except via rekeying + starting over**
- **Note:** known weaknesses if used other than as stream cipher
CPU speed vs. key size

- **Adding one bit to the key doubles work for brute force attack**

- **Effect on encryption time is often negligible or even free**

- **It costs nothing to use a longer RC4 key**

- **Going from 128-bit AES to 256-bit AES takes (at most) 40% longer for en-/decryption but increases the attacker’s effort by a factor of** 2^{128}

- **Using triple DES costs 3£ more to encrypt, but increases the attacker’s effort by a factor of** 2^{112}

- **Moore’s Law favors the defender!**
Summary

Have considered:
- Block vs. stream ciphers
- Feistel cipher design & structure
- DES
 - details
 - strength
- Differential & Linear Cryptanalysis
- Block cipher design principles
- Use of a block cipher: Modes of operation