Internet Security

Prof. Anja Feldmann, Ph.D.
anja@inet.tu-berlin.de
http://www.inet.tu-berlin.de/

Prof. Dr. Jean-Pierre Seifert
jpseifert@sec.t-labs.tu-berlin.de
http://www.sec.t-labs.tu-berlin.de/
General information

- Area: BKS – Hauptstudium Vertiefer
 - Integrated into the Module systems of SECT and INET
- Time: Tuesday: 10:00 – 12:00
- Room: MA041
- Language
 - English (questions can be asked in German!)
- Web site
 - http://www.inet.tu-berlin.de/teaching0/ss2015/is_ss15/
- ISIS:
 - https://www.isis.tu-berlin.de/course/view.php?id=4062
General information

Exam
- For those that need it
- Oral or written exam after semester end (depends on # of participants)

Prerequisite: some knowledge of
- How the Internet works
- How operating systems work
- Little bit of undergraduate math for cryptography

Additional contact persons:
- Apoorv Shukla (INET) and Claudia Petzsch (SECT)
What is this course about?

- Network security? Not quite!

- Focus:
 - Security of networked applications
 - Security of Web browsers
 - Protection of network infrastructure
 - Firewalls
 - Intrusion detection
Topics

- Basics of secure network protocol design
 - Using cryptography (not a cryptography class!)
 - The role of correct software

- Practical focus
 - This is not a pure academic-style course
 - You’ll see real security holes
 - A lot of (in)security is about doing the unexpected
 - “Think sideways”
How to think about insecurity

- Bad guys don’t follow rules
- Need to understand what sort of attacks are possible to compromise a system
 - Prerequisite to understand what to protect in a system!
- This is not the same as actually launching them!
 - Taking a security class is not an excuse for hacking
 - Hacking is any form of unauthorized access, including exceeding authorized permissions
 - The fact that a file or computer is not properly protected is no excuse for unauthorized access
Reading

- ... (see Web)

- Research papers (see Web)
Network security

Overview
Dichotomy: Hosts

- Is (or can be) well-controlled
- There are well-developed authentication and authorization models
- Strong notion
 - Of "privileged" state
 - What programs can use/do
Dichotomy: Networks

- None of the above
- Anyone can (and does) connect to the network
- Connectivity can only be controlled in very small, well-regulated environments, and maybe not even then
- Different OS have different – or no – notions of userIDs and privileges

=> Notions of privilege is missing
Networking

- Networks interconnect
- Networks always interconnect
- Interconnections happen everywhere but mainly at the edges
Failures

Benign failures

- Most network failures are benign
- The Internet allow for such failures
 - Data corruption
 - Timeouts
 - Dead hosts
 - Routing problems
 - ...

Rule of thumb:

- Anything that can happen by accident can happen malicious
 - -> much more dangerous!
Failures and Faults

[Diagram of faults classification]

- Development Faults
- Physical Faults
- Interaction Faults

Classifications:
- Development Faults
 - Operational Faults
 - Internal Faults
 - External Faults
 - Natural Faults
 - Human-Made Faults
 - Hardware Faults
 - Software Faults
 - Non-Malicious Faults
 - Malicious Faults
 - Non-Deliberate Faults
 - Deliberate Faults
 - Accidental Faults
 - Incompetence Faults
 - Permanent Faults
 - Transient Faults

Examples:
- Software Flaws
- Logic Bombs
- Hardware Errata
- Production Defects
- Physical Deterioration
- Physical Interference
- Intrusion Attempts
- Viruses & Worms
- Input Mistakes
Principle: **Trust nothing**

- A host can/should trust **nothing** that comes over the wire!
- Any desired protections have to be explicitly supplied
- There may be help from lower layers that supply protection
 - Yet those layers have to be based on the same principle!
 - Research on such lower layer protection is a very hot topic and far from being solved!
Attitude question

- Unproductive attitudes
 - „Why would anyone ever do that?“
 - „That attack is too complicated“
 - „No one knows how this system works, so they can’t attack it“

- Better attitudes
 - „Programming Satan’s Computer“ (Ross Anderson)
 - „Assume that serial number 1 of any device is delivered to the enemy“
 - „You hand your packets to the enemy to deliver; you receive all incoming packets from the enemy“
Network security tools

- Cryptography
- Network-based access control (firewalls and more)
- Monitoring

- Protocol analysis by formal verification

- Paranoid design!
Protocol design

- Heavy use of crypto and authentication
- Ensure that sensitive fields are protected
- Make authentication bilateral
- Figure out the proper authorization
- Defend against
 - Eavesdropping
 - Modification
 - Deletion
 - Replay
 - And combinations thereof
Buggy software

- Most network security holes are due to buggy code
- A buggy network-connected program is an insecure one
- Correct coding counts for a lot!
Course overview

- Introduction
 - Attacks and threats, cryptography overview
 - Authentication (Kerberos, SSL)
- Applications
 - Web, browser, email, ssh
- Lower layer network security
 - NAT, firewalls
- Monitoring / information gathering
 - Intrusion detection, network scans
- Availability
 - Worms, denial of service, network infrastructure