Overview of Router Architecture

What’s inside a router?
What does a Router Look Like?

Ericsson SSR 8020
BNG/BRAS/PGW Capable
- Maximum 16 Tbit/s

Cisco CRS-1
Core Capable
- 2.2Tbit/s for single chassis
- Up to 322Tbit/s for multichassis
And like this:

Dlink DIR-615 Wireless N 300 Home Router
- LAN: 4x 10/100Mbit/s Ports
- WAN: 1x 10/100Mbit/s Port
- Up to 300 Mbit/s throughput
- WiFi support

Belkin (formerly Cisco, Linksys) N600 DB Wireless Dual-Band N+ Home Router
- LAN: 4x 10/100Mbit/s Ports
- WAN: 1x 10/100Mbit/s Port
- Up to 300 Mbit/s throughput
- WiFi support
Who Makes Core Routers?

- Cisco
 - CRS (Carrier Router Series)
- Juniper
 - T-series
- Alcatel-Lucent (soon to be Nokia)
 - XRS (Extensible Routing System)
- Huawei
 - Netengine
- Others manufacture aggregation/access networking gear for edge deployments
Router architecture overview

two key router functions:
- run routing algorithms/protocol (RIP, OSPF, BGP)
- **forwarding** datagrams from incoming to outgoing link

Incoming reachability information via RIP/OSPF/IS-IS/BGP used to compute routing information Base (RIB)

Routing, management control plane (software)

Forwarding data plane (hardware)

Forwarding information base (FIB) computed, pushed to line cards

High-speed switching fabric

Routing processor

Router line cards on input side

Router line cards on output side
RIB

- Router can contain many different RIBs
 - One for each routing protocol
 - Usually consolidated into one global RIB or into FIB
 - End system IP addresses (/32s) populated through ARP for default gateway MAC

- Minimum contents
 - Network id of destination subnet
 - Cost/metric for hop
 - Next hop gateway or end system

- Other information
 - Quality of service, e.g. a U if the link is up
 - Access control lists for security
 - Interface, such as eth0 for first Ethernet line card, etc.

<table>
<thead>
<tr>
<th>Network Destination</th>
<th>Netmask</th>
<th>Gateway</th>
<th>Interface</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>192.168.0.1</td>
<td>192.168.0.100</td>
<td>10</td>
</tr>
<tr>
<td>127.0.0.0</td>
<td>255.0.0.0</td>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>1</td>
</tr>
<tr>
<td>192.168.0.0</td>
<td>255.255.255.0</td>
<td>192.168.0.100</td>
<td>192.168.0.100</td>
<td>10</td>
</tr>
<tr>
<td>192.168.0.100</td>
<td>255.255.255.255</td>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>10</td>
</tr>
<tr>
<td>192.168.0.1</td>
<td>255.255.255.255</td>
<td>192.168.0.100</td>
<td>192.168.0.100</td>
<td>10</td>
</tr>
</tbody>
</table>
FIB

- FIB contains optimized next hop forwarding information
 - Exact format depends on the line card hardware (ASIC, CAM, etc.)

- RIB compiled into FIB by the router control processor when routes change
 - Example:
 - If routing ASIC uses btrees, then RIB compiled into btrees
 - Usually contains information in a form needed for getting a packet out fast
 - Example:
 - Replace IP address of outgoing interface by hardware address on dedicated switch fabric

- Installed into the line card by route processor

- A packet that experiences a FIB miss on fast path will incur a substantial performance penalty
 - Must be transferred to route control processor and processed on the slow path
Input port functions

- Physical layer: bit-level reception
- Data link layer: e.g., Ethernet

Decentralized switching:
- Given datagram dest., lookup output port using forwarding table in input port memory ("match plus action")
- Goal: complete input port processing at ‘line speed’
- Queuing: if datagrams arrive faster than forwarding rate into switch fabric
Switching fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transferred from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three types of switching fabrics

```
memory

memory

bus

dedicated fabric
```
Switching via memory

first generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system’s memory
- speed limited by memory bandwidth (2 bus crossings per datagram)
Switching via a bus

- datagram from input port memory
- to output port memory via a shared bus
- *bus contention*: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers
Switching via Dedicated Fabric

- overcome bus bandwidth limitations
- banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design:
 - fragmenting datagram into fixed length cells.
 - append hardware address of output line card to front of cell
 - switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network
Output ports

- **buffering** required when datagrams arrive from fabric faster than the transmission rate
- *scheduling discipline* chooses among queued datagrams for transmission
Output port queueing

- Buffering when arrival rate via switch exceeds output line speed
- Queueing (delay) and loss due to output port buffer overflow!

At t, packets more from input to output

One packet time later
How much buffering?

- RFC 3439 rule of thumb: average buffering equal to “typical” RTT (say 250 msec) times link capacity C
 - e.g., C = 10 Gpbs link: 2.5 Gbit buffer
- recent recommendation: with N flows, buffering equal to

$$\frac{\text{RTT} \cdot C}{\sqrt{N}}$$
Input port queuing

- fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention: only one red datagram can be transferred.
lower red packet is blocked

one packet time later: green packet experiences HOL blocking
Summary

- Routers have evolved from dedicated workstations/PCs into heavy duty industrial equipment costing millions of €s
 - Capable of switching 300+ Tb/s
- Dedicated line cards separate fast path from slow path
 - Slow path through route processor primarily for control plane traffic
- Different hardware approaches to accelerating fast path forwarding
- Queuing and buffering can help or hinder traffic flow