Malicious Activity and Risky Behavior in Residential Networks

Gregor Maier1, Anja Feldmann1, Vern Paxson2,3, Robin Sommer2,4, Matthias Vallentin3

1 TU Berlin / Deutsche Telekom Laboratories
2 International Computer Science Institute (ICSI)
3 University of California, Berkeley
4 Lawrence Berkeley National Laboratories (LBNL)
Introduction

- Common perception: Residential users responsible for much of insecurity
- Even worse in developing regions
- But: Few systematic studies to date
- We undertake such a study
- Also important: What influences security?
 - Anti-virus
 - Software updates
 - Risky behavior (requesting blacklistes URLs)
Outline

- Data sets and vantage points
- Methodology
- Security awareness and risky behavior
- Malicious activity
- Discussion & Conclusion
Outline

- Data sets and vantage points
 - European ISP
 - AirJaldi network in India
 - Lawrence Berkeley Lab
 - Data annotations

- Methodology

- Security awareness and risky behavior

- Malicious activity

- Discussion & Conclusion
Data sets: European ISP

- Major ISP in Europe
- Observations from 20,000 DSL customers
- All data immediately anonymized
- 14 day observation period
- No traffic shaping or port filters
- Traffic makeup:
 - More than 50% HTTP
 - Peer-to-Peer around 15%
 - NNTP also significant
Data sets: AirJaldi in India

- Community network in rural India
- 10,000 users; several 1,000 machines
- All share 10Mbps uplink
- 400 wireless routers, spread over 80km radius
- Use "layered NAT" approach => Cannot identify individual hosts
- 3 traces, 34-40hrs each
- Traffic makeup:
 - 56—72% HTTP
 - Quite some VoIP and instant messenger traffic
 - Almost no Peer-to-Peer or NNTP
Data sets: LBNL

- Lawrence Berkeley National Lab, CA, USA
- 12,000 hosts
- 4 day observation period; 7,000 hosts active
- Open network policy but
- Security staff:
 - Uses Bro IDS
 - Infected machines are taken offline immediately
- We do not expect any/much malicious activity
Data annotation

- Want to know more about DSL-lines
- Identify influences on security
- Is NAT used? How many hosts are connected
- How active are they?
 - Group by number of HTTP request
 - Classify into high/medium/low activity

- Operating systems
 - Are Macs more secure?
 - Identify by HTTP user-agent string
 - Check DSL lines with only Macs (and no Windows)
Outline

- Data sets and vantage points

- Methodology
 - Scanning
 - Spamming
 - Known malware families
 - Generic NIDS
 - Security awareness and risky behavior

- Security awareness and risky behavior

- Malicious activity

- Discussion & Conclusion
Finding Scanners (1)

- **Problem:** NIDS are tuned to find incoming scans
 - Often use threshold of unsuccessful connections per source

- **We want outgoing scans but**
 - Scan traffic embedded in benign activity
 - Cannot use simple threshold

- **Idea (borrowed from TRW scan detector)**
 - Ratio of successful connections / all connections per \(<\text{DSL-line, remote-IP}>\) pair
 - Does it work?
Finding Scanners (2)

- Histogram: Success ratio per pair

![Histogram showing success ratio per pair]

pair success ratio

0.0 0.2 0.4 0.6 0.8 1.0
Finding Scanners (3)

- Next step: classify pair as successful or unsuccessful
- Count \#successful VS. \#unsuccessful pairs per DSL-line
Finding Scanners (4)

- Where's the problem?
 - Peer-to-Peer (P2P) protocols
 - Peer tries to contact peers' IPs
 - But peer might be offline now or moved to other IP
 - Many unsuccessful connections
 - But not only filesharing, WoW also uses P2P protocol for maps
- Solution: Look only for suspicious / dangerous ports
 - E.g., windows SMB, databases, VNC, remote desktop
Finding Scanners (5)

- #successful VS. #unsuccessful for suspicious ports

Now we have a nice separation

⇒ Classify as scanner if >100 (or 1,000) unsuccessful pairs
Finding Spammers

- We omit the details for brevity
- Similar idea to scanning:
 - Count number of contacted SMTP servers
- DSL lines contact \(<\leq25 \text{ or } \geq100\) SMTP servers
 - Use cutoff of 100 for spam classification
Malware families

- Use network signatures of known malware
- Conficker
 - Tries to resolve known DNS names
- Zlob
 - Changes DNS resolvers
 - Targets Macs and Windows
- Zeus
 - Tries to resolve DNS names of C&C servers
 - Domain names from blacklist
Generic NIDS

- Use Snort with Emerging Threads rulesets
- 3,500 rules (but undocumented)
- 1 million alarms per day, 90% of DSL lines
 - Unuseable
- Includes everything
 - Adware: users might have installed them on purpose
 - "Spyware": includes Alexa toolbar, but Alexa clearly states what it does
 - etc.
 - Excluded those
Generic NIDS (2)

- Still too many hits :-(
- Lack of documentation ⇒ Cannot tell:
 - How bad traffic triggering a specific rule is
 - False positives
- E.g., signatures for botnet command & control:
 - Check for single or double-letter URL parameters (b=..., tm=...)
 - Many benign websites use them too

- Conclusion
 - Emerging threads might be useful for small networks with strict policies but for our case
 - **Document rules!!!!**
Security awareness & risky behavior

- **Security awareness**
 - Do user use/update anti-virus software?
 - Do user update operating systems?
 - Detecting by inspecting HTTP user-agents

- **Risky behavior**
 - Do users request URLs blacklisted by Google Safe Browsing?
 - We update our blacklist copy every 25 minutes

- **Again:** this helps to find factors influencing security problems
Methodology summary

- Behavioral metrics
 - Scanning
 - Spamming

- Malware families
 - Conficker
 - Zlob
 - Zeus

- Generic NIDS (Snort with Emerging Threads)
 - Unuseable

- Security awareness and risky behavior
Outline

- Data sets and vantage points
- Methodology
- Security awareness and risky behavior
 - Security awareness
 - Google blacklist
 - Comparison with AirJaldi and LBNL
- Malicious activity
- Discussion & Conclusion
Security awareness

Up to 90% of DSL-lines update AV and software
Google blacklists

- Up to 4.4% of DSL-lines request blacklisted URL per day
- **Over 14 days: 19% do so!!!**
- Google blacklist integrated in many browsers
 - Were users warned by browser and ignored it?
 - Google requires update every 30 min
 - Check whether same user-agent downloads blacklist and requests URL
 - Result: mixed. Some *were warned, but ignored it!!*
Compare to AirJaldi and LBNL

- **AirJaldi**
 - Cannot do per DSL-line or host (NAT hierarchy)
 - Fraction of requests for anti-virus and software updates similar
 - Fraction of requests that are blacklisted similar

- **LBNL**:
 - Less anti-virus and software updates
 - But central update servers at LBNL
 - Other OS mix
 - Significantly less risky behavior
Outline

- Data sets and vantage points
- Methodology
- Security awareness and risky behavior
- Malicious activity
 - General results
 - Influences on malicious activity
 - Malicious activity and Macs
 - Comparison with AirJaldi and LBNL
- Discussion & Conclusion
Malicious activity

Only small fraction of lines trigger metrics <0.7% per day, < 1.3% overall
Malicious activity (2)

- Malware families contribute most
 - Few DSL-lines scan or spam
- 44% of spammers active only single day
- 38% of Zeus lines only trigger single day
- Zlob active on 8.4 (10) days on average (median)
- Conficker active on 6.5 days mean, 6 median
- Most others around 4 days (mean) and 2-4 days median
- **92% of "bad" lines only trigger single metric**
 - We likely underestimate total
Influences on malicious activity

- No strong influence of anti-virus and OS updates
 - Prob. only 1.26% if not using anti-virus

- No strong influence of NAT

- A little influence of activity
 - High activity: 4.08%
 - Medium activity: 1.94%
 - Low activity: 0.46%

- Only slight influence of blacklist hits
 - Prob. 3.19%. Less than high activity
 - **Risky behavior does not impact infections much!**
Malicious activity and Macs

- 2.7% of DSL-lines have only Macs
- Mac infections: 0.54% (compare to 1.23%)
- But only Zlob triggers
 - No scanning, spamming, Conficker, Zeus on Macs
- 0.54% of Macs have Zlob, only 0.24% overall
- Mac not better than Windows
- Malware that targets Macs is successful!
Comparison with AirJaldi and LBNL

- No malicious activity at LBNL
 - As we expected
 - Scan and spam metrics trigger on
 - Benign mail server
 - Penetration testing hosts that scan

- AirJaldi
 - 180—260 active IPs per trace
 - Each IP can have 1—1,000s of hosts
 - Cannot analyze per host (NAT)
AirJaldi Malicious Activity

<table>
<thead>
<tr>
<th>IP</th>
<th>AirJaldi 1</th>
<th>AirJaldi 2</th>
<th>AirJaldi 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP 1</td>
<td>ZeuS</td>
<td>ZeuS</td>
<td>ZeuS</td>
</tr>
<tr>
<td></td>
<td>Hi AV SW</td>
<td>Med AV SW</td>
<td>Hi AV SW</td>
</tr>
<tr>
<td>IP 2</td>
<td>Conficker(3)</td>
<td>Conficker(1)</td>
<td>Spam</td>
</tr>
<tr>
<td></td>
<td>Med SW</td>
<td>Med SW</td>
<td>Med BLK AV SW</td>
</tr>
<tr>
<td>IP 3</td>
<td>Med BLK AV SW</td>
<td>Med AV SW</td>
<td>Hi BLK AV SW</td>
</tr>
<tr>
<td>IP 4</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>IP 5</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP 6</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP 7</td>
<td>Med BLK AV SW</td>
<td>Hi BLK AV SW</td>
<td>Hi BLK AV SW</td>
</tr>
<tr>
<td>IP 8</td>
<td>Hi BLK SW</td>
<td>Hi BLK AV SW</td>
<td>Hi BLK AV SW</td>
</tr>
<tr>
<td>IP 9</td>
<td>Conficker(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hi AV SW</td>
<td>Med AV SW</td>
<td>Med AV SW</td>
</tr>
<tr>
<td>IP 10</td>
<td>Spam? Scan</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IP 11</td>
<td>Scan</td>
<td>AV</td>
<td>AV</td>
</tr>
</tbody>
</table>

Not much malicious activity

Comparable to European ISP

Hi / Med = High / Medium Activity
AV = anti-virus
SW = software update
BLK = Blacklist hit
Shaded background = malicious activity
Outline

- Data sets and vantage points
- Methodology
- Security awareness and risky behavior
- Malicious activity
- Discussion & Conclusion
We use behavioral metrics and malware signatures

Confident that metrics find what they should

Cannot know how much we miss

- Lower bound
- Might be significant (e.g., most lines trigger 1 metric)

Out approach mimics closely how security analysts work

- Deploy toolbox of orthogonal strategies

Snort with emerging threads problematic

- Many blacklists have similar problems
Discussion & Conclusion (2)

- Residential users do not spam or scan
 - Likely not infected with such malware

- Users are risk aware
 - Anti-virus and software updates widespread
 - Does not lower infection risk

- Users exhibit risky behavior
 - Many request blacklisted URLs
 - Does not affect infection risk by as much as one may assume

- Comparing to rural community network in India
 - Very similar in terms of malicious activity and risky behavior
 - No infections at LBL and less risky behavior