On the impact of variability on buffer dynamics in IP networks
Mechanism that create variability

- User behavior
 - Application level variability, e.g., Web
- Network characteristics
 - Different delays, round-trip time, cross traffic
- Feedback control
 - Reliability and adaptivity
Approach

- Study traces from simulations
 - Complete control over all aspects of network
 Workload model, Network model, Protocol
- Real network traces used as benchmark
 - Simulation setup and trace analysis
- Simulation traces used for trace driven simulation
 - Study queuing dynamic
- Correlation of analysis results to simulation setup
 - Identify network features that cause divergence
Outline

- Simulation setup
 - Workload model
 - Network
 - Protocol
- Impact of variability at the application layer
 - Mice vs. elephants [V. Jacoson]
Workloads

- No variability:
 - Infinite sources
 - 50 clients requesting big files

- High variability:
 - Web sources
 - 350 clients downloading Web pages

- Simulation:
 - Client startup: random time 0-600 seconds
 - Duration: 4200 seconds
 - Analysis: 900-4200 seconds
High variability workload: Web

Parameters (similar to SURGE [BC98]):
- Number of clients, pages, objects, packets per object
- Time between Web pages, Web objects
A simple network topology

- Used to limit capacity
 - 1.5 Mbits to 3 Mbits

- Used to vary delay
 - 640 ms or 40 ms

- Used to measure before bottleneck

Server

Clients

40-100 Kbits/second
TCP: Reliable byte stream

- Data segmented into segments
- Segments are acked by receiver (cumulative)
- Timer for every segment
- Segments retransmitted
 - Timer goes off
 - Four duplicate Acks received
- Flow control
 - Sliding window protocol avoids losses at receiver
 - Bandwidth limits impose congestion window
 - Slow start increases cwnd exponentially
 - Congestion avoidance increases cwnd linearly
 - Packet losses triggers congestion window changes
Elephants: Infinite sources

- Packet rate process and buffer occupancy process
 - Network round trip time 1.3 seconds
Elephants (cont.)

- Packet rate process and buffer occupancy process
 - Network round trip time 0.14 seconds
Mice and elephants: Web sources

- Significant portion of connections are short
Elephants vs. Mice

- No variability in workload and network
 - synchronization of packet rate process
 - synchronization of buffer occupancy process

- Mice stop synchronization
 - no apparent synchronization
 - higher packet arrival process
 - higher utilization
Effect of synchronization

- Percentage of connections with losses during ΔT

Infinite sources

Web sources
Effect of synchronization (cont.)

- Fractions of connections with losses in slow-start

Infinite sources Web sources
Effect of synchronization (cont.)

- Distribution of number of consecutive packet drops
Why mice eliminate synchronization

- **Mice**
 - Too short for feedback
 - TCP states non-synchronized
 - Arrival highly bursty
 - Large fraction in slow-start

- **Elephant**
 - Within two cycles losses for almost all connections
 - TCP states synchronized
 - Small percentage in slow start

- **Consequence**
 - # of burst losses larger for Web than Infinite srcs
Conclusion

- Infinite source models and queue analysis provide necessary simplifications for
 - Analysis
 - Simulations

- Challenge
 - Address variability at
 - User level
 - Network level