Active and Passive Measurements: Measuring Networks

Prof. Anja Feldmann, Ph.D.
Dr. Ramin Khalili
Georgios Smaragdakis, Ph.D.
Outline

- Whois
- Looking Glasses
- Internet ATLAS
- BGP data
Whois

- Who is who in the Internet?
 - Internet domain name and network number directory service
- Information about
 - Domains: e.g., google.com, microsoft.com,…
 - Internet address space allocation
 - Networks: AS number, e.g., AS3320
- Databases maintained by the local Internet routing registries:
 - ARIN: Northern America
 - RIPE: Europe
 - APNIC: Asia–Pacific
 - LACNIC: Latin America
 - AFRINIC: Africa
Whois

whois [-h host] [-p port] name ...

-h host
Use the specified host instead of the default variant. Either a host name or an IP address may be specified.

-p port
Connect to the whois server on port. If this option is not specified, whois defaults to port 43.

• Examples (Google)
 • whois www.google.com
 • whois 173.194.32.240
 • whois AS15169
Outline

- Whois
- Looking Glasses
- Internet ATLAS
- BGP data
Looking glasses (LGes)

- Publicly available remote servers that run BGP commands and traceroutes:
 - show ip bgp
 - show bgp neighbors
 - show ip bgp regexp
 - show thread cpu
 - traceroute
 - traceroute with AS numbers (IPv4 only)

- Operated by ISPs or NOCs, e.g. DTAG.

- Wide list available at:
 http://www.bgp4.as/looking-glasses
 e.g., Level(3) looking glass: lg.level3.net
RIPE Routing Information Service (RIS)

- RIPE Routing Information Service:
 http://www.ris.ripe.net
- General routing statistics
 - Prefix size distribution
 - Neighbors
 - AS path lengths
 - Whois
 - Bogon filtering
- Looking glass
 - BGP summary
 - BGP neighbors
 - show CPU
 - traceroute with AS numbers
Outline

- Whois
- Looking Glasses
- Internet ATLAS
- BGP data
Routing ATLAS

- ATLAS: “book of maps or charts”
- Tool to explore and compare networks:
 - CAIDA (as-rank.caida.org)
 - Fixedorbit (www.fixedorbit.com)
 - NetConfiggs (www.netconfigs.com)
- Metrics to compare networks:
 - IP space originated
 - Number of peers
 - Customers
 - Average path length
Internet ATLAS

- TeleGeography (www.telegeography.com)
- Information about
 - Pricing: access, IP transit, enterprise networks
 - Internet: bandwidth growth, IXPs
 - Communication infrastructure: fiber layout and plans, hosting,
 - Business: Internet and mobile phone market, 4G
 - Maps: submarine cables, Internet, global traffic
Outline

- Whois
- Looking Glasses
- Internet ATLAS
- BGP data
BGP routing data

- Oregon RouteViews (www.routeviews.org)
- RIPE RIS (www.ris.ripe.net)
- Public Internet Exchange Points (IXP) LGe: www.bgp4.as/internet-exchanges
- Example: Cyclops (cyclops.cs.ucla.edu)
 - Collects public BGP data + looking glasses
 - Statistics about
 - Global visibility
 - AS classification
 - Peering relationships
BGP routing data

- Source: RIPE RIS raw data
 http://www.ripe.net/data-tools/stats/ris/ris-raw-data
- There are two types of files: updates (every 5 mins) and aggregated views (bview, every 8 hours)
- Follow the links, and e.g., download
 http://data.ris.ripe.net/rrc00/2014.04/bview.20140405.0800.gz

Use bgpdump:
$ ssh tst1.inet.tu-berlin.de
Login: measurement14
Password: Meter14

(or install bgpdump in your local machine)
BGP routing data

- Reading BGP data: bgpdump
 Basic command: bgp <file>

TIME: 04/05/14 08:00
TYPE: TABLE_DUMP_V2/IPV4_UNICAST
PREFIX: 1.0.0.0/24
SEQUENCE: 0
FROM: 218.189.6.2 AS9304
ORIGINATED: 03/27/14 22:32:41
ORIGIN: IGP
ASPATH: 9304 15169
NEXT_HOP: 218.189.6.2
BGP routing data

- Reading BGP data: bgpdump
 - bgpdump –m bgpfile → one line output
- Routing table output:

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Peer-router</th>
<th>Prefix</th>
<th>AS_path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1265313600</td>
<td>B</td>
<td>96.4.0.55</td>
<td>11686</td>
</tr>
</tbody>
</table>

Human readable time: date -d @1265313600

- BGP updates (for the updates.XXXX.XXX.gz files):

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Withdraw_or_Update</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1272672012</td>
<td>A</td>
<td>195.22.216.188</td>
</tr>
<tr>
<td>1272672012</td>
<td>W</td>
<td>154.11.11.113</td>
</tr>
</tbody>
</table>

Timestamp Withdraw_or_Update Prefix
BGP routing data

Find how many announcements are in a file:

$ bgpdump -m bview.20140405.0800 | wc -l
8,457,852

Find how many unique subnets are announced:

$ bgpdump -m bview.20140405.0800 | awk '{split($0,a,"|"); print a[6]}' | sort -S5G | uniq | wc -l
530060

Notice that some of the prefixes may be more/less specific, private/unroutable
BGP routing data

Show the AS–level path length

$ bgpdump -m bview.20140405.0800 | awk '{split($0,a,"|"); print a[7]}'

Notice that there may be AS-path prepending (e.g., ASA ASB ASB ASB ASC)

Find the average AS–level path length

$ bgpdump -m bview.20140405.0800 | awk '{split($0,a,"|"); print a[7]}' | awk '{n=split($0,b," "); print n}' > as–level.path.length.dat

Use R to find the statistics (as we did for the ping delay analysis)