Introduction to statistics

Literature

Raj Jain: The Art of Computer Systems Performance Analysis, John Wiley
Schickinger, Steger: Diskrete Strukturen Band 2, Springer
Goals

❒ Provide intuitive conceptual background for some standard statistical methods
 ❑ Draw meaningful conclusions in presence of noisy measurements
 ❑ Learn how to apply techniques in new situations
→ Don’t simply plug and crank from a formula

❒ Present techniques for aggregating large quantities of data
 ❑ Obtain a big-picture view of your results
 ❑ Obtain new insights from complex measurement and simulation results
Statistics: Why do we need it?

1. Aggregate data into meaningful information.

445 446 397 226
388 3445 188 1002
47762 432 54 12
98 345 2245 8839
77492 472 565 999
1 34 882 545 4022
827 572 597 364
What is a statistic?

“A quantity that is computed from a sample [of data].”
Merriam-Webster

→ A single number used to summarize a larger collection of values

What are statistics?

“A branch of mathematics dealing with the collection, analysis, interpretation, and presentation of masses of numerical data.”
Merriam-Webster

→ We are most interested in analysis and interpretation here

“Lies, damn lies, and statistics!”
The simplest statistic: a mean?

- Reduces dataset to a single number
- But what does this mean mean?
- Measures of central tendency
 - Sample mean
 - Sample median
 - Sample mode
- Other means
 - Arithmetic
 - Harmonic
 - Geometric
- Quantifying dispersion
The problem with means

- Performance is multidimensional
 - CPU or I/O time
 - Network delay
 - Interactions of various components
 - ...

- Systems are often specialized
 - Performs great on application type X
 - Performs lousy on anything else

- Potentially a wide range of execution times on one system using different benchmark programs
The problem with means (2)

- Nevertheless, people still want a single number answer!
- *How to (correctly) summarize a wide range of measurements with a single value?*
Measures of central tendency

- Values that attempt to describe a set of data by identifying the "center" within that set of data
- Use this "center" to summarize overall behavior
- You will be pressured to provide "mean" value
 - Understand how to choose the best type
- Examples
 - Sample mean: "Average" value
 - Sample median: ½ of the values are above, ½ below
 - Sample mode: Most common value
Measures of central tendency (2.)

- “Sample” implies
 - Values are measured from a discrete random variable X

- Value computed is only an approximation of the true mean value of the underlying process

- True mean value cannot actually be known
 - Would require infinite number of measurements
Sample mean

- Expected value of $X = E[X]$
 - First moment of X
 - $x_i = $ values measured ($i = \{1, \ldots, n\}$)
 - $p_i = P(X = x_i) = P(we \ measure \ x_i)$
Sample mean (2)

- Without additional information, assume
 - $p_i = \text{constant} = \frac{1}{n}$ (Laplace principle)
 - $n = \text{number of measurements}$

- Arithmetic mean
 - Common “average”
Potential problem with means

- Sample mean gives equal weight to all measured values

- Outliers can have a significant influence on the computed mean value

- May distort our intuition about the central tendency of the measured values
Potential problem with means (2.)
Median

- Index of central tendency with
 - \(\frac{1}{2}\) of the values larger, \(\frac{1}{2}\) smaller

- Algorithm
 - Sort n measurements
 - If n is odd
 - Median = middle value
 - Else, median = mean of two middle values

- Reduces skewing effect of outliers
Example

- Measured values: 10, 20, 15, 18, 16
 - Mean = 15.8
 - Median = 16

- Obtain one more measurement: 200
 - Mean = 46.5
 - Median = \(\frac{1}{2} (16 + 18) = 17 \)

- Median gives more intuitive sense of central tendency
Potential problem with means (3.)
Mode

- Value that occurs most often

- May not exist

- May not be unique — multiple modes
 - E.g., “bi-modal” distribution
 - Two values occur with same frequency

- May distort our intuition about the **central tendency** of the measured values
Example
Mean, median, or mode?

- **Mean**
 - If the sum of all values is meaningful
 - Incorporates all available information

- **Median**
 - Intuitive sense of central tendency with outliers
 - What is “typical” of a set of values?

- **Mode**
 - When data can be grouped into distinct types, categories (categorical data)
Quantifying dispersion

- How “spread out” are the values?
- How much spread relative to the mean?
- What is the shape of the distribution of values?

=> A mean hides information about variability!
Histograms

- Similar mean values
- Widely different distributions
- How to capture this variability in one number?
Measures of dispersion

Quantifies how “spread out” measurements are

- Standard deviation
- Range
 - (max value) – (min value)
- 10- and 90- percentiles
- Maximum distance from the mean
 - Max of $| x_i - \text{mean} |$
- Neither efficiently incorporates all available information
Determine the distribution of data?

- Plot a histogram
 - Count of observations within a cell or bucket

- Problem
 - How to determine cell size?
 - Small cells => large variations in # of obs per cell
 - Large cells => details are lost
 - Guideline: if any cell has less than five obs. increase cell size or use variable cell histogram
Determine the distribution of data(2)?

- Plot a scatter plot
 - For each value: X vs. Y

- Problem
 - Hard to visualize results in large data sets
 - Large dots => hard to distinguish points
 - Small dots => hard to see outliers
 - Use two-dimensional histograms
 - Use densities
 - Which scale?
 - Linear
 - Logarithmic
Determine the distribution of data(3)?

- Plot an empirical CDF
 - Concentrate $1/n$ probability at each of the n numbers in a sample
 - Describes the probability that a real-valued random variable X with a given probability distribution will be found at a value less than or equal to x

- Problem
 - Tail of interest \Rightarrow plot CCDF
Determine the distribution of data (4)?

- Plot a density
 - Smoothed normalized counts of observations

- Problem
 - How to determine cell size?
 - How to do the smoothing
Sources of Experimental Errors

Accuracy, precision, resolution
Experimental errors

- Errors → noise in measured values
- **Systematic errors**
 - Result of an experimental “mistake”
 - Typically produce constant or slowly varying bias

Controlled through skill of experimenter

- Examples
 - Temperature change causes clock drift
 - Forget to clear cache before timing run
Experimental errors

- Random errors
 - Unpredictable, non-deterministic
 - Unbiased \rightarrow equal probability of increasing or decreasing measured value

- Result of
 - Limitations of measuring tool
 - Observer reading output of tool
 - Random processes within system

- Typically cannot be controlled
 - Use statistical tools to characterize and quantify
Accuracy, precision, resolution

- **Resolution** is the fineness to which an instrument can be read.

- **Precision** is the fineness to which an instrument can be read *repeatably and reliably*.

- **Accuracy** is correctness (i.e., how close to reality)
Accuracy, precision, resolution II

- **Systematic errors → accuracy**
 - How close mean of measured values is to true value
 - Hard to determine true accuracy
 - Relative to a predefined standard
 - E.g. definition of a “second”

- **Random errors → precision**
 - Repeatability of measurements
 - Dependent on tools

- **Characteristics of tools → resolution**
 - Smallest increment between measured values
 - Quantify amount of imprecision using statistical tools
Frequency of measuring specific value

Precision

Resolution

Mean of measured values

Accuracy

True value
Confidence interval for the mean (1)

\[1 - \alpha = \text{probability that a measured value is between } c_1 \text{ and } c_2 \]

probability density function of measured values
Normalize x
Confidence interval for the mean (2)

- As $n \to \infty$, normalized distribution becomes Gaussian (normal)

$1 - \alpha = \text{probability that mean of measured values is between } c_1 \text{ and } c_2$

probability density function of normalized measured values
An example

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Measured value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.0 s</td>
</tr>
<tr>
<td>2</td>
<td>7.0 s</td>
</tr>
<tr>
<td>3</td>
<td>5.0 s</td>
</tr>
<tr>
<td>4</td>
<td>9.0 s</td>
</tr>
<tr>
<td>5</td>
<td>9.5 s</td>
</tr>
<tr>
<td>6</td>
<td>11.3 s</td>
</tr>
<tr>
<td>7</td>
<td>5.2 s</td>
</tr>
<tr>
<td>8</td>
<td>8.5 s</td>
</tr>
</tbody>
</table>
An example (2)
An example (3)

- 90% CI → 90% chance that the mean of (normalized) measured values is in the interval
- 90% CI → $\alpha = 0.10$
An example (4)

- 90% CI = [6.5, 9.4]
 - 90% chance that new measured mean is between 6.5, 9.4
- 95% CI = [6.1, 9.7]
 - 95% chance that the new measured mean is between 6.1, 9.7
- Why is interval wider when we are more confident?
Higher confidence → Wider interval?
Key assumption

- Measurement values are i.i.d (independent and identically distributed) random variables
- Measurement errors are Normally distributed.
- Is this true for most measurements on real systems?
Key assumption (2)

- Saved by the **Central Limit Theorem**

 Sum of a “large number” of values from any distribution will be Normally (Gaussian) distributed.

- What is a “large number?”
 - Typically assumed to be > 30
 - But in our case often millions or billions
How many measurements?

- Width of interval inversely proportional to \sqrt{n}
- Want to minimize number of measurements
- Find confidence interval for mean, such that:
 $$P(\text{actual mean in interval}) = (1 - \alpha)$$
How many measurements (2)?

- But n depends on knowing mean and standard deviation!
- Estimate s with small number of measurements
- Use this s to find n needed for desired interval width