Understanding Online Social Network Usage
from a Network Perspective

Fabian Schneider∗‡
fabian@net.t-labs.tu-berlin.de

Anja Feldmann‡ Balachander Krishnamurthy§ Walter Willinger§

∗ Work done while at AT&T Labs–Research
‡Technische Universität Berlin / Deutsche Telekom Laboratories
§ AT&T Labs–Research

Internet Measurement Conference 2009
Motivation

• >600,000,000 users on Online Social Networks (OSNs) ... and the number is still growing

• Open questions/challenges
 • Which features are popular among OSN users?
 • How much time do users’ spend interacting with OSNs?
 • Is there a correlation between subsequent interactions?

• Relevance of OSN usage
 ISPs: data transport, connectivity
 OSN providers: develop and operate scalable systems
 R&D: Identify trends, suggest improvements, and new designs
Outline

1. Approach
2. Session Characteristics
3. Feature Popularity
4. Dynamics within Sessions
5. Conclusions

Sessions

Session = Set of interactions of one user

Features

Feature = Action a user can perform
General Approach

1. Reconstruct OSN clickstreams from anonymized packet-level traces
 - Anonymized HTTP header traces from two large ISPs
 - Used Bro¹ to extract HTTP request-response pairs (rr-pairs)

2. Map rr-pairs into sessions
 - Sessions identified via SessionIDs (from HTTP Cookie header)
 - Track logins and logouts ⇒ Authenticated or offline state
 - Cookies help if login or logout not observed

3. Classify rr-pairs
 - Active (rr-pair resulting from user action) or Indirect (e.g. followup/embedded via HTTP Referer chain)
 - Determine user actions, group into 13 categories

¹www.bro-ids.org
OSN Selection criteria:

- OSNs focussing on profiles (e.g., no YouTube, ...)
- 2 globally popular
- 2 locally popular (well represented at one ISP)
OSN Selection

OSN Selection criteria:

- OSNs focusing on profiles (e.g., no YouTube, ...)
- 2 globally popular
- 2 locally popular (well represented at one ISP)

Facebook

studiVZ

LinkedIn

hi5
HTTP Header Traces (anonymized)

- Collected at residential broadband networks of two commercial ISPs
- Each site connects $\geq 20,000$ DSL users
- Endace monitoring cards for packet capture

<table>
<thead>
<tr>
<th>ID</th>
<th>start date</th>
<th>dur</th>
<th>sites</th>
<th>size</th>
<th>rr-pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISP-A1</td>
<td>22 Aug’08 noon</td>
<td>24h</td>
<td>all</td>
<td>>5 TB</td>
<td>>80 M</td>
</tr>
<tr>
<td>ISP-A2</td>
<td>18 Sep’08 4am</td>
<td>48h</td>
<td>all</td>
<td>>10 TB</td>
<td>>200 M</td>
</tr>
<tr>
<td>ISP-A3</td>
<td>01 Apr’09 2am</td>
<td>24h</td>
<td>all</td>
<td>>6 TB</td>
<td>>170 M</td>
</tr>
<tr>
<td>ISP-B1</td>
<td>21 Feb’08 7pm</td>
<td>25h</td>
<td>OSNs</td>
<td>>15 GB</td>
<td>>2 M</td>
</tr>
<tr>
<td>ISP-B2</td>
<td>14 Jun’08 8pm</td>
<td>38h</td>
<td>OSNs</td>
<td>>50 GB</td>
<td>>3 M</td>
</tr>
<tr>
<td>ISP-B3</td>
<td>23 Jun’08 10am</td>
<td>>7d</td>
<td>OSNs</td>
<td>>110 GB</td>
<td>>7 M</td>
</tr>
</tbody>
</table>
HTTP Header Traces (anonymized)

- Collected at residential broadband networks of two commercial ISPs
- Each site connects $\geq 20,000$ DSL users
- Endace monitoring cards for packet capture

Table: Overview of anonymized HTTP header traces.

<table>
<thead>
<tr>
<th>ID</th>
<th>start date</th>
<th>dur</th>
<th>sites</th>
<th>size</th>
<th>rr-pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISP-A1</td>
<td>22 Aug’08 noon</td>
<td>24h</td>
<td>all</td>
<td>>5 TB</td>
<td>>80 M</td>
</tr>
<tr>
<td>ISP-A2</td>
<td>18 Sep’08 4am</td>
<td>48h</td>
<td>all</td>
<td>>10 TB</td>
<td>>200 M</td>
</tr>
<tr>
<td>ISP-A3</td>
<td>01 Apr’09 2am</td>
<td>24h</td>
<td>all</td>
<td>>6 TB</td>
<td>>170 M</td>
</tr>
<tr>
<td>ISP-B1</td>
<td>21 Feb’08 7pm</td>
<td>25h</td>
<td>OSNs</td>
<td>>15 GB</td>
<td>>2 M</td>
</tr>
<tr>
<td>ISP-B2</td>
<td>14 Jun’08 8pm</td>
<td>38h</td>
<td>OSNs</td>
<td>>50 GB</td>
<td>>3 M</td>
</tr>
<tr>
<td>ISP-B3</td>
<td>23 Jun’08 10am</td>
<td>>7d</td>
<td>OSNs</td>
<td>>110 GB</td>
<td>>7 M</td>
</tr>
</tbody>
</table>
Manual Traces

Data set: Active browsing while monitoring passively

For customization

- Good faith effort to explore the feature set of the OSN
- Identify site names, relevant cookies, login/logout actions
- Identify URL patterns for action/category classification

For validation

- Provides ground truth
- 95% of observed actions covered by manual traces
- Remaining actions classified as
 - Guessed (if the URL contains a hint: /ajax/editphoto.php)
 - Unknown
Category Examples

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>All actions on the homepage once authenticated</td>
</tr>
<tr>
<td>Profile</td>
<td>Accessing and changing profiles, posting on walls, privacy settings</td>
</tr>
<tr>
<td>Apps</td>
<td>Applications (external and internal), only rr-pairs directed towards OSN servers</td>
</tr>
<tr>
<td>Photos</td>
<td>Uploading, tagging, and managing photos</td>
</tr>
<tr>
<td>Friends</td>
<td>Browsing, inviting, and accepting friends</td>
</tr>
<tr>
<td>Offline</td>
<td>All actions while unauthenticated, e.g., public profile browsing, registering</td>
</tr>
</tbody>
</table>
Caveats of our Approach

• No automated way for
 • producing the URL patterns or
 • extracting the relevant cookies

• External apps: Not tackled as hosted on different sites
 • Requires customization to all/top external apps
 • Navigation redirects could be leveraged

• Friendship graph: Cannot tell if two users are friends
 • Requires parsing of payload (privacy!)
 • Requires users to actually access their friend lists during observation
Outline

1. Approach
2. Session Characteristics
3. Feature Popularity
4. Dynamics within Sessions
5. Conclusions
OSN Session Characteristics

Volume of OSN sessions

- Consistent with a heavy-tailed distribution
- Facebook sessions: 200kB–10MB (StudiVZ: 50kB–5MB)
- Typical Web sessions: 100B–10kB, but heavier tail

OSN session durations

- Most sessions are short: 1-5 minutes
- Few lasting for more than an hour (10%–20%)
- Very long (days) sessions observed for 7d trace
Outline

1. Approach
2. Session Characteristics
3. Feature Popularity
4. Dynamics within Sessions
5. Conclusions
Active Facebook rr-pairs by category for ISP-A2

- **messaging**: 22.9%
- **apps**: 22.7%
- **home**: 19.4%
- **profile**: 8.9%
- **photos**: 8.5%
- **offline**: 5.8%
- **friends**: 4.7%
- **search**: 2.7%
- **groups**: 1.5%
- **osnspecific**: 1.2%
- **UNKNOWN**: 0.9%
- **other**: 0.4%
- **videos**: 0.4%
- **ads**: 0.1%

Active - guessed
Active - verified
Active Facebook rr-pairs by category for ISP-A2

Findings
⇒ small fraction of guessed (<3%) & UNKNOWN
Action Popularity

Active Facebook rr-pairs by category for ISP-A2

Findings

⇒ small fraction of guessed (<3%) & UNKNOWN
⇒ Top categories: Messaging, Apps, Home
Volume per Category

Active and indirect Facebook rr-pairs by category for ISP-A2

- home: 25.6%
- profile: 20.5%
- photos: 17.4%
- apps: 15.2%
- offline: 7.5%
- friends: 6.2%
- messaging: 3.5%
- search: 1.3%
- videos: 1.2%
- groups: 0.6%
- unknown: 0.5%
- osn-specific: 0.4%
- other: 0.1%
- ads: 0.0%
Volume per Category

Active and indirect Facebook rr-pairs by category for ISP-A2

Findings

⇒ Home, Profile, and Photos rise in importance
⇒ Upload only for Photos and Apps
Feature Popularity: Observations

Active Facebook rr-pairs per session by category for ISP-A2

Heterogeneous user base:
Many users use only one feature category during a session.
Feature Popularity: Observations (cont’d)

OSN and all HTTP rr-pairs per hour for ISP-A2

Per hour usage:
Time-of-day effects: similar for OSNs and all HTTP

OSN actions

- remaining
- profile
- apps
- messaging
- photos

All HTTP

Time [hours]
Requested profiles

Approach:

- Profiles represent a user in an OSN. Requests to profiles indicate interest in a user.
- We distinguish three types of profiles: own, other, and public.
- Method: Count which and how often profiles are requested.

Findings

- Types of profile requests:
 - Majority to profiles of other users, 25-35% to own profile,
 - 12% (22%) to public profiles: Facebook Pages (LinkedIn).
- Profile requests per Facebook session:
 - mean number of requested profiles: 6
 - unique profiles: only 3
Outline

1. Approach

2. Session Characteristics

3. Feature Popularity

4. Dynamics within Sessions

5. Conclusions
Activity vs. Inactivity Periods

Apply within session inactivity timeout of 5min:

⇒ Sessions >1min: 50% of users are active all time
⇒ Sessions >40min: >95% have inactivity periods

Facebook action after inactivity period for ISP-A2

Action after inactivity

- Top categories: Messaging, Home, Offline
- Distribution changes with the length of the pause
Feature Sequences

Click sequences of Facebook for ISP-A2: Global transition probabilities

Findings

⇒ Messaging traps users; Home, Photos and Profile attract users to stay
Summary

Findings:

- Most of the sessions are short (few minutes) and small in terms of volume (several MBytes)
- Long sessions are dominated by inactivity periods
- Top action categories are: Messaging, Apps, Home, Profile, and Photos.
- Facebook users are trapped by Messaging and Photos

Future Work

- Expand analysis to other OSNs/external apps, and overcome caveats
- Evaluate new OSN designs with OSN user model (e.g., PeerSoNa)

awww.peerson.net
Summary

Findings:

- Most of the sessions are short (few minutes) and small in terms of volume (several MBytes)
- Long sessions are dominated by inactivity periods
- Top action categories are: Messaging, Apps, Home, Profile, and Photos.
- Facebook users are trapped by Messaging and Photos

Future Work

- Expand analysis to other OSNs/external apps, and overcome caveats
- Evaluate new OSN designs with OSN user model (e.g., PeerSoNa)

awww.peerson.net