Network traffic time series analysis
Traffic measurements: Pre-1990

- Early Telephony: Importance of measurements (e.g., Erlang, Palm, Wilkinson, ...)
- Modern Telephony: Measurements are a scarce commodity; supposedly „well-understood“ characteristics
- Early data networking: Importance of measurements (e.g., ARPANET measurements by Kleinrock, et al.)
- Modern data networking: No data or only a few small data sets are available
Traffic measurements: Pre-1990

- Traffic data analysis
 - Strictly traditional inference techniques
 - Focus on choosing best-fitting model
 - Obsession with “Squeezing a data set dry“

- Traffic and performance modeling
 - Black-box or operational models dominate
 - No real need to talk to subject-matter experts
 - Traffic is viewed as “just another time series ...“
 - Main objective: “What can be analyzed?“
Post-1990: What has changed?

- Traffic measurements
 - Abundance of traffic measurements; reproducibility

- Traffic data analysis
 - Data exhibits unusual features
 - From statistical inference to scientific inference
 - Networks are complex; need for subject-matter expertise

- Traffic and performance modeling
 - Need for physical-based or structural models
 - Main objective: „What matters for performance?“
Sample data trace

Measured Data Traffic (Ethernet LAN)

Time Unit = 100 Seconds
High-volume measurements

- 1 hour of ETHERNET LAN traffic (10 Mbits)
 - About 1 million packets
- 1 day of uninterrupted ETHERNET LAN
 - About 2 Gigabytes of data
- 1 hour of ATM traffic (155 Mbits)
 - About 100 million packets
- 1 day of uninterrupted ATM measurements
 - About 1 Terabyte of data
- 1 day of uninterrupted 1 Gigabit measurements
 - About 10 Terabyte of data
High-quality measurements

- Timestamp accuracy
 - From millisecond to microsecond accuracy
- More than just another time series
 - Information about all layers in network hierarchy
 - TCP/IP header information
 - Payload
 - Higher level protocol information
Time Series

Example

- # of packets (bytes) per 10 mseconds
- # of TCP connections arriving per second
- # of modem sessions arriving per second

Definitions

- Time series: X_1, X_2, \ldots, X_n
- Aggregated process: $X^{(m)}$

$$X^{(m)}(k) = \frac{1}{m} (X_{(k-1)m+1} + \ldots + X_{km}), \quad k \geq 1$$

- Stationary time series:
 distribution of X independent of time