Concept: Traffic Flow

Prof. Anja Feldmann, Ph.D.
Dr. Nikolaos Chatzis
Passive measurement capabilities: Packet monitors

- Available data:
 - All protocol information
 - All content

- Possible analysis:
 - Application performance
 - User behavior
 - Application usage (e.g., P2P)
 - Abuse detection (intrusion detection system)

- Disadvantages:
 - Amount of data
 - Need for data aggregation
 - Needle in a haystack problem
 - Only captures on-network information
 - Usually needs fixed installations
Layer 3: IP
IP Header Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Length</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>4-bit</td>
<td>Version of the IP protocol</td>
</tr>
<tr>
<td>Header Length</td>
<td>4-bit</td>
<td>Length of the header, excluding options and payload</td>
</tr>
<tr>
<td>Type of Service (TOS)</td>
<td>8-bit</td>
<td>Type of Service for the packet</td>
</tr>
<tr>
<td>Total Length (Bytes)</td>
<td>16-bit</td>
<td>Total length of the packet, including header and payload</td>
</tr>
<tr>
<td>Identification</td>
<td>16-bit</td>
<td>Identification number</td>
</tr>
<tr>
<td>Flags</td>
<td>3-bit</td>
<td>Flags for network layer</td>
</tr>
<tr>
<td>Fragment Offset</td>
<td>13-bit</td>
<td>Offset of fragment within the packet</td>
</tr>
<tr>
<td>TTL</td>
<td>8-bit</td>
<td>Time to Live for the packet</td>
</tr>
<tr>
<td>Protocol</td>
<td>8-bit</td>
<td>Protocol number of the packet</td>
</tr>
<tr>
<td>Header Checksum</td>
<td>16-bit</td>
<td>Sum of header fields and options</td>
</tr>
<tr>
<td>Source IP Address</td>
<td>32-bit</td>
<td>Source IP address of the packet</td>
</tr>
<tr>
<td>Destination IP Address</td>
<td>32-bit</td>
<td>Destination IP address of the packet</td>
</tr>
<tr>
<td>Options (if any)</td>
<td></td>
<td>Options for additional information</td>
</tr>
<tr>
<td>Payload</td>
<td></td>
<td>Payload of the packet</td>
</tr>
</tbody>
</table>
IP header analysis

- Source/destination addresses for traffic
 - Identity of popular Web servers & heavy customers
- Traffic breakdown by protocol (TCP/UDP/ICMP)
 - Amount of traffic not using congestion control
- Distribution of packet delay through the router
 - Identification of typical delays and anomalies
- Distribution of packet sizes
 - Workload models for routers and measurement devices
- Burstiness of the traffic on the link over time
 - Provisioning rules for allocating link capacity
- Throughput between each pair of src-dst addresses
 - Detection and diagnosis of performance problems
Layer 4: TCP
TCP header format

16-bit source port number 16-bit destination port number

32-bit sequence number

32-bit acknowledgement number

4-bit header length U R C A P R S F

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

Options (if any)

Payload
TCP header analysis

- Source and destination port numbers
 - Popular applications (HTTP, P2P, SMTP, DNS)
 - Number of parallel connections between src-dst pairs
- Sequence/ACK numbers and packet timestamps
 - Out-of-order/lost packets; violations of congestion control
 - Estimates of throughput and delay of Web downloads
- Number of packets/bytes per connection
 - Size of typical Web transfers; frequency of bulk transfers
- SYN flags from client machines
 - Unsuccessful connection requests; denial-of-service attacks
- FIN/RST flags from client machines
 - Frequency of Web transfers aborted by clients
Application layer
Packet contents: How much payload?

- Application-layer header
 - HTTP and RTSP request and response headers
 - FTP, NNTP, and SMTP commands and replies
 - DNS queries and responses; OSPF/BGP messages

- Application-layer body
 - HTTP resources (or checksums of the contents)
 - User keystrokes in Telnet/Rlogin sessions

- Security/privacy
 - Significant risk of violating user privacy
 - More sensitive for information from higher-level protocols
 - Traffic analysis thwarted by use of end-to-end encryption
HTTP request and response message

```
GET /tutorial.html HTTP/1.1
Date: Mon, 27 Aug 2001 08:09:01 GMT
From: jrex@research.att.com
User-Agent: Mozilla/4.03
CRLF

HTTP/1.1 200 OK
Date: Thu, 12 Jul 2001 10:09:03 GMT
Server: Netscape-Enterprise/3.5.1
Last-Modified: Sun, 12 Mar 2000 11:12:23 GMT
Content-Length: 23
CRLF
Traffic measurement talk
```
Application-layer analysis

- URLs from HTTP request messages
 - Popular resources/sites; potential benefits of caching

- Meta-data in HTTP request/response messages
 - Content type, cacheability, change frequency, etc.
 - Browsers, protocol versions, protocol features, etc.

- Contents of DNS messages
 - Common queries, frequency of errors, query latency

- Contents of Telnet/Rlogin sessions
 - Intrusion detection (break-ins, stepping stones)

- Routing protocol messages
 - Workload for routers; detection of routing anomalies
 - Tracking the current topology/routes in the backbone
Mechanics: Application-level messages

- Application-level transfer may span multiple packets
 - Demultiplex packets into separate “flows”
 - Key of source/dest IP addresses, port, and protocol
 - Hash table to store packets from different flows
Mechanics: Application-level messages

- Reconstructing ordered, reliable byte stream
 - Sequence number and segment length in TCP header
 - Heap to store packets in correct order & discard duplicates

- Extraction of application-level messages
 - Parsing the syntax of the application-level header
 - Identifying the start of the next message (if any)

- Logging or online analysis of message
 - Record URL, header, body, checksum, timestamps, etc.
 - Copy traces or analysis result to separate machine
System constraints

- High data rate
 - Bandwidth limits on CPU, I/O, memory, and disk/tape
 - Could monitor lower-speed links (near the edge of network)

- High data volume
 - Space limitations in main memory and on disk/tape
 - Could do online analysis to sample, filter, & aggregate

- High processing load
 - CPU/memory limits for extracting, counting, & analyzing
 - Could do offline processing for time-consuming analysis

- General solutions to system constraints
 - Sub-select the traffic (addresses/ports, first n bytes)
 - Kernel and interface card support for measurement
 - Efficient/robust software and hardware for the monitor
Passive measurement capabilities: Packet monitors (2.)

- **Deployment scenarios:**
 - Needs cooperation of the network operator
 - Limited number
 - Specialized hardware/software
 - Data collection / aggregation infrastructure

- **Challenges**
 - Data integrity
 - Incomplete data
 - User privacy & network security
 - Data correlation
 - Data privacy vs. data sharing
 - Data filtering
 - Data collection across network confederations
Passive measurement capabilities: Flow statistics

- Available data:
 - Summary information about traffic flows
IP flows: What is it?

- Set of packets that “belong together”
 - Source/destination IP addresses and port numbers
 - Same protocol, ToS bits, ...
 - Same input/output interfaces at a router (if known)

- Packets that are “close” together in time
 - Maximum spacing between packets (e.g., 15 sec, 30 sec)
 - Example: Flows 2 and 4 are different flows due to time
Passive measurement capabilities: Flow statistics (2.)

- Available data:
 - Summary information about traffic flows

- Possible analysis:
 - (Application performance)
 - User behavior
 - Application usage (P2P usage)
 - Abuse detection (intrusion detection system)

- Disadvantages:
 - Coarser grain information
 - Data flood
 - Data aggregation
 - Needle in a haystack
 - Only captures on network information (no device info)
 - Usually needs to be configured on network devices
Passive measurement capabilities: Flow statistics (3.)

- Deployment scenarios:
 - Needs cooperation of the network operator
 - Larger number
 - Specialized hardware/software
 - Data collection/aggregation infrastructure

- Challenges
 - Lack of detail
 - Data integrity
 - Incomplete Data
 - Data correlation
 - Data privacy vs. data sharing
 - Data collection across network confederations
Collection of measurement data

- Need to transport measurement data
 - Produced and consumed in different systems
 - Usual scenario: large number of measurement devices, small number of aggregation points (databases)
 - Usually in-band transport of measurement data
 - Low cost & complexity

- Reliable vs. unreliable transport
 - Reliable
 - Better data quality
 - Measurement device needs to maintain state and be addressable
 - Unreliable
 - Additional measurement uncertainty due to lost measurement data
 - Measurement device can “shoot-and-forget”
Controlling measurement overhead

- Measurement overhead
 - In some areas, could measure everything
 - Information processing not the bottleneck
 - Examples: geology, stock market, ...
 - Networking: thinning is crucial!

- Three basic methods to reduce measurement traffic
 - Filtering
 - Aggregation
 - Sampling
 - ... and combinations thereof
Filtering

Examples:

- Only record packets ...
 - matching a destination prefix (to a certain customer)
 - of a certain service class (e.g., expedited forwarding)
 - violating an ACL (access control list)
 - TCP SYN or RST packets (attacks, abandoned http download)
Aggregation

Example: identify packet flows, i.e., sequence of packets close together in time between source-destination pairs [flow measurement]

- Independent variable: source-destination
- Metric of interest: total # pkts, total # bytes, max pkt size
- Variables aggregated over: everything else

<table>
<thead>
<tr>
<th>src</th>
<th>dest</th>
<th># pkts</th>
<th># bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.b.c.d</td>
<td>m.n.o.p</td>
<td>374</td>
<td>85498</td>
</tr>
<tr>
<td>e.f.g.h</td>
<td>q.r.s.t</td>
<td>7</td>
<td>280</td>
</tr>
<tr>
<td>i.j.k.l</td>
<td>u.v.w.x</td>
<td>48</td>
<td>3465</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>
Preemption: tradeoff space vs. capacity
- Fix cache size
- If a new aggregate (e.g., flow) arrives, preempt an existing aggregate
 - For example, least recently used (LRU)
- Advantage: smaller cache
- Disadvantage: more measurement traffic
- Works well for processes with temporal locality
 - Because often, LRU aggregate will not be accessed in the future anyway → no penalty in preempting
Example: Cisco Netflow

- Traffic monitoring system on switches and routers
 - Cache with 5-tuples: srcIP, srcPort, dstIP, dstPort, proto
 - Upon packet lookup, cache entry is created or updated
 - When cache full, flows are timed-out
 - Timers for flow time-outs
Example: Cisco Netflow (2)

- Impact of # of flows on router CPU usage

- Impact of sampling on average CPU utilization (Cisco 7505):
 - 1/100: -75%
 - 1/1000: -82%
Sampling

- At high speeds, traffic monitoring requires sampling
- How to sample?
 - Systematic sampling
 - Pick out every 100th packet and record entire packet/record header, e.g., Netflow
 - Ok only if no periodic component in process
 - Random sampling
 - Flip a coin for every packet, sample with prob. 1/100
 - Record a link load every n seconds, e.g., SNMP
Sampling (2.)

- What can we infer from samples?

- Easy:
 - Metrics directly defined over variables of interest, e.g., mean, variance etc.
 - Confidence interval = “error bar”
 - Decreases as \(\frac{1}{\sqrt{n}} \)

- Hard:
 - Small probabilities:
 - “Number of SYN packets sent from A to B”
 - Events such as: “Has X received any packets?”
Sampling (3.)

- Hard:
 - Metrics over sequences
 - Example: “How often is a packet from X followed immediately by another packet from X?”
 - Higher-order events: probability of sampling \(i \) successive records is \(p^i \)
 - Would have to sample different events, e.g., flip coin, then record \(k \) packets
Sampling (4.)

- Sampling objects with different weights
- Example:
 - Weight = flow size
 - Estimate average flow size
 - Problem: a small number of large flows can contribute very significantly to the estimator
- Stratified sampling: make sampling probability depend on weight
 - Sample “per byte” rather than “per flow”
 - Try not to miss the “heavy hitters” (heavy-tailed size distribution!)

\[p(x) \text{ constant} \]
\[p(x) \text{ increasing} \]
Sampling (5.)

Object size distribution

Estimated mean:
\[\hat{\mu} = \frac{1}{n} \sum_x x \cdot n(x) \]

Variance mainly due to large \(x \)

Better estimator: reduce variance by increasing # samples of large objects

\(n(x) = \# \) samples of size \(x \)

\(x \cdot n(x) \): contribution to mean estimator
Basic Properties

<table>
<thead>
<tr>
<th></th>
<th>Filtering</th>
<th>Aggregation</th>
<th>Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>exact</td>
<td>exact</td>
<td>approximate</td>
</tr>
<tr>
<td>Generality</td>
<td>constrained a-priori</td>
<td>constrained a-priori</td>
<td>general</td>
</tr>
<tr>
<td>Local Processing</td>
<td>filter criterion for every object</td>
<td>table update for every object</td>
<td>only sampling decision</td>
</tr>
<tr>
<td>Local memory</td>
<td>none</td>
<td>one bin per value of interest</td>
<td>none</td>
</tr>
<tr>
<td>Compression</td>
<td>depends on data</td>
<td>depends on data</td>
<td>controlled</td>
</tr>
</tbody>
</table>
Combinations

- In practice, rich set of combinations of filtering, aggregation, sampling

- Examples:
 - Filter traffic of a particular type (ACLs), then sample packets, e.g., Netflow
 - Sample packets, then filter
 - Aggregate packets between different source-destination pairs (e.g., subnet), sample resulting records
 - When sampling a packet, sample also the next k packets, compute some aggregate metric over these k packets
 - etc.