Internet Security

Prof. Anja Feldmann, Ph.D.
anja@net.t-labs.tu-berlin.de
http://www.net.t-labs.tu-berlin.de/

Prof. Dr. Jean-Pierre Seifert
jpseifert@sec.t-labs.tu-berlin.de
http://www.sec.t-labs.tu-berlin.de/
General information

- Area: BKS – Hauptstudium Vertiefer
 - Integrated into a Module system of SECT and INET (see website)
- Time
 - Wednesday: 10:00 – 12:00
- Room
 - MA 43
- Language
 - English (questions can be asked in German!)
- Website
 - http://www.net.t-labs.tu-berlin.de/teaching/ss11/IS_lecture/
- Mailing list
 - via ISIS (link on the website)
General information

- Exam
 - For those that need it 😊
 - Oral or written exam after semester end (depends on # of participants)

- Prerequisite: some knowledge of
 - How the Internet works
 - How operating systems work
 - Little bit of undergraduate math for cryptography

- Additional contact persons:
 - Jan Böttger (INET) and Collin Mulliner (SECT)
What is this course about?

(Network security? Not quite!)

Focus:
- Security of networked **applications**
 - Security of Web browsers
- Protection of network **infrastructure**
 - Firewalls
 - Intrusion detection
Topics

 Basics of secure network protocol design
 ✔ Using cryptography (not a cryptography class!)
 ✔ The role of correct software

 Practical focus
 ✔ This is not a pure academic-style course
 ✔ You'll see real security holes
 ✔ A lot of (in)security is about doing the unexpected
 ✔ „Think sideways“
How to think about insecurity

- Bad guys don’t follow rules
- Need to understand what sort of attacks are possible to compromise a system
 - Prerequisite to understand what to protect in a system!
- This is not the same as actually launching them!
 - Taking a security class is not an excuse for hacking
 - Hacking is any form of unauthorized access, including exceeding authorized permissions
 - The fact that a file or computer is not properly protected is no excuse for unauthorized access
Reading

- Kaufman, Perlman, and Spencer.
 Network Security: Private Communication in a Public World,

- Cheswick, Bellovin, and Rubin.
 Firewalls and Internet Security: Repelling the Wily Hacker,

- Garfinkel, Spafford, and Schwartz.
 Practical Unix & Internet Security,
 O'Reilly Media, Inc.

- Matt Bishop.
 Computer Security: Art and Science,
 Addison-Wesley Professional 2002

- ... (see Web)

- Research papers (see Web)
Network security

Overview
Dichotomy: Hosts

- Is (or can be) well-controlled
- There are well-developed authentication and authorization models
- Strong notion
 - Of "privileged" state
 - What programs can use/do
Dichotomy: Networks

- None of the above
- Anyone can (and does) connect to the network
- Connectivity can only be controlled in very small, well-regulated environments, and maybe not even then
- Different OS have different – or no – notions of userIDs and privileges

=> notions of privilege is missing
Networking

- Networks interconnect
- Networks always interconnect
- Interconnections happen everywhere 😊 but mainly at the edges
Failures

- Benign failures
 - Most network failures are benign
 - The Internet allow for such failures
 - Data corruption
 - Timeouts
 - Dead hosts
 - Routing problems
 - ...

- Rule of thumb:
 - Anything that can happen by accident can happen malicious
 - -> much more dangerous!
Failures and Faults
Principle: Trust nothing

- A host can/should trust nothing that comes over the wire!
- Any desired protections have to be explicitly supplied
- There may be help from lower layers that supply protection
 - Yet those layers have to be based on the same principle!
 - Research on such lower layer protection is a very hot topic and far from being solved!
Attitude question

- Unproductive attitudes
 - „Why would anyone ever do that?“
 - „That attack is too complicated“
 - „No one knows how this system works, so they can’t attack it“

- Better attitudes
 - „Programming Satan’s Computer“ (Ross Anderson)
 - „Assume that serial number 1 of any device is delivered to the enemy“
 - „You hand your packets to the enemy to deliver; you receive all incoming packets from the enemy“
Network security tools

- Cryptography
- Network-based access control (firewalls and more)
- Monitoring

- Protocol analysis by formal verification

- Paranoid design!
Protocol design

- Heavy use of crypto and authentication
- Ensure that sensitive fields are protected
- Make authentication bilateral
- Figure out the proper authorization
- Defend against
 - Eavesdropping
 - Modification
 - Deletion
 - Replay
 - And combinations thereof
Buggy software

- Most network security holes are due to buggy code
- A buggy network-connected program is an insecure one 😞
- Correct coding counts for a lot!
Course overview

- Introduction
 - Attacks and threats, cryptography overview
 - Authentication (Kerberos, SSL)

- Applications
 - Web, browser, email, ssh

- Lower layer network security
 - NAT, (IPsec), firewalls

- Monitoring / information gathering
 - Intrusion detection, network scans

- Availability
 - Worms, denial of service, network infrastructure