TDC1: Universal construction
So far...

- 2-process consensus cannot be solved using registers
- N-process consensus can be solved using registers and Ω
- 2-process consensus can be solved using registers and T&S or queues
 - but not 3-process consensus!

Why consensus is interesting?
Because it is *universal*!

- If we can solve consensus among N processes, then we can *implement* every *object* shared by N processes.

- A key to implement a generic fault-tolerant service (replicated state machine).
Today’s lecture

- Herlihy’s universal construction
- Consensus numbers
- From shared memory to message passing and back
 - In the presence of malicious adversary
What is an *object*?

Object O is defined by the tuple (Q,O,R,σ):

- Set of states Q
- Set of operations O
- Set of outputs R
- Sequential specification σ, a subset of $O \times Q \times R \times Q$:

 (o,q,r,q') is in σ \iff if operation o is applied to an object in state q, then the object *can* return r and change its state to q'
Deterministic objects

- An operation applied to a *deterministic* object results in exactly one (output, state) in RxQ, i.e., σ can be seen a function $O \times Q \rightarrow RxQ$

- E.g., queues, counters, T&S are deterministic
- Unordered set (put/get) – non-deterministic
Example: queue

Let V be the set of possible elements of the queue

$Q = V^*$

$O = \{\text{enq}(v) \mid v \in V, \text{deq}\}$

$R = V \cup \{\text{empty}\} \cup \{\text{ok}\}$

$\sigma(\text{enq}(v), q) = (\text{ok}, q.v)$

$\sigma(\text{deq}(), q.v) = (v, q)$

$\sigma(\text{deq}(), \text{empty}) = (\text{empty}, \text{empty})$
Implementation: definition

A distributed algorithm A that, for each operation o in S and for every pi, describes the corresponding sequence of steps on the base objects.

A run of A is *well-formed* if no process invokes a new operation on the implemented object before returning from the old one.
Implementation: correctness

A (wait-free) implementation A is correct if in every well-formed run of A

- **Wait-freedom**: every operation run by p_i returns in a finite number of steps of p_i

- **Linearizability**: ≈ operations “appear” instantaneous (the corresponding *history* is *linearizable*)
Linearization

\[\text{enq}(x) \quad \text{ok} \quad \text{enq}(y) \quad \text{ok} \]

\[\text{deq}() \quad y \]

\[\text{deq}() \quad x \]

\[p_1 - \text{enq}(x); \ p_1 - \text{ok}; \ p_3 - \text{deq}(); \ p_3 - x; \]
\[p_1 - \text{enq}(y); \ p_1 - \text{ok}; \ p_2 - \text{dequeue}(); \ p_2 - y \]
Theorem 1 [Herlihy, 1991] If N processes can solve consensus, then N processes can (wait-free) implement every object $O=(Q,O,R,\sigma)$
A moment of meditation

Suppose you are given an unbounded number of consensus objects and atomic read-write registers

You want to implement an object $O=(Q,O,R,\sigma)$

How would you do it?
Universal construction: idea

Every process that has a pending operation does the following:

- Publish the corresponding *request*
- Collect published requests and use consensus instances to serialize them: the processes agree on the order in which the requests are executed
Universal construction: variables

Shared abstractions:
- N atomic registers \(R[0,...,N-1] \), initially \(\emptyset \)
- N-process consensus instances \(C[1], C[2], ... \)

Local variables for each process \(p_i \):
- integer \(\text{seq} \), initially 0
 // the number of executed requests of \(p_i \)
- integer \(k \), initially 0
 // the number of \textbf{batches} of
 // executed requests
- sequence \textit{linearized}, initially empty
 //the \textbf{sequence} of executed requests
Universal construction: algorithm

Code for each process p_i:

Implementation of operation op

seq++
$R[i] := (op,i,seq)$ // publish the request

repeat

V := read $R[0,...,N-1]$ // collect all requests
requests := V-\{linearized\} // choose not yet linearized requests

if requests≠Ø then

k++

decided:=C[k].propose(req)
linearized := linearized.decided
//append decided request in some deterministic order

until (op,i,seq) is in linearized

return the result of (op,i,seq) in linearized
// using the sequential specification σ
Universal construction: correctness

- Linearization of a given run: the order in which operations are put in the *linearized list*
 - well-defined: all *linearized* lists are related by containment
 - Can it violate the temporal order?

 ✓ In every finite run, the longest *linearized* list consists of all complete operations and a subset of incomplete ones
Universal construction: correctness

- Wait-freedom:
 - Termination and validity of consensus: there exists \(k \) such that the request of \(p_i \) gets into \(req \) list of every processes that runs \(C[k].propose(req) \)

- Linearizability: if \(op1 \) precedes \(op2 \), then \(op2 \) cannot be linearized before \(op1 \)
 - Validity of consensus: a value cannot be decided unless it was previously proposed
Another universal abstraction: CAS

Compare&Swap (CAS) stores a value and exports operation \(\text{CAS}(u,v) \) such that:

- If the current value is \(u \), \(\text{CAS}(u,v) \) replaces it with \(v \) and returns \(u \)
- Otherwise, \(\text{CAS}(u,v) \) returns the current value

A variation: CAS returns a boolean (whether the replacement took place) and an additional operation \(\text{read}() \) returns the value
N-process consensus with CAS

Shared objects:
 CAS CS initialized Ø
 // Ø cannot be an input value

Code for each process p_i ($i=0,...,N-1$):
 $v_i :=$ input value of p_i
 $v :=$ CS.CAS($Ø,v_i$)
 if $v = Ø$
 return v_i
 else
 return v
M-consensus object

M-consensus stores a value in \{\emptyset\} U V and exports operation propose(v), v in V:

For 1^{st} to M^{th} propose() operations:

- If the value is \emptyset, then propose(v) sets the value to v and returns v
- Otherwise, returns the value

All other operations do not change the value and return \emptyset
M-process consensus with M-consensus

Immediate: every process p_i simply invokes $C\text{.propose}(\text{input of } p_i)$ and returns the result of it

$(M+1)$-consensus using M-consensus?

Impossible: $M+1$-th process is ignorant
Consensus number

An object O has consensus number k (we write $\text{cons}(O)=k$) if

- k processes can solve consensus using registers and any number of copies of O
- but $k+1$ processes cannot

If no such number k exists for O, then $\text{cons}(O)=\infty$

$(k=\text{cons}(O)$ is the maximal number of processes that can be perfectly synchronized using copies of O and registers)
Consensus numbers

- \(\text{cons(} \text{register} \text{)} = 1 \)
- \(\text{cons(} \text{T&S} \text{)} = \text{cons(} \text{queue} \text{)} = 2 \)
- ...
- \(\text{cons(} \text{N-consensus} \text{)} = \text{N} \)
 - \(\checkmark \) \text{N-consensus is N-universal!}
- ...
- \(\text{cons(} \text{CAS} \text{)} = \infty \)
Open questions

- **Robustness**

 Suppose we have two objects A and B, \(\text{cons}(A) = \text{cons}(B) = k \)

 Can we solve (\(k+1\))-consensus using registers and copies of A and B?

- Can we implement an object of consensus power \(k\) shared by \(N\) processes \((N>k)\) using \(k\)-consensus objects?
- What about message passing?
- What about malicious (Byzantine) processes?
Message-passing

- Which results for shared memory can be translated into message-passing models?

- Consider a network where every two processes are connected via a **reliable** channel
 - no losses, no creation, no duplication
Implementing message-passing

Theorem 1 A reliable message-passing channel between two processes can be implemented using two 1W1R registers

Corollary 1 Consensus is impossible to solve in an asynchronous message-passing system if at least one process may crash
Implementing shared memory

Theorem 2 A one-writer N-reader regular register can be implemented in a (reliable) message-passing model where a majority of processes are correct.

Corollary 2 N-process consensus can be solved in a message-passing where a majority of processes are correct using Ω.

© 2011 P. Kuznetsov
Implementing a 1W1R register

Upon write(v)
 t++
 send [v,t] to all
 wait until received [ack,t] from a majority
 return ok

Upon read()
 r++
 send [?,r] to all
 wait until received {(t’,v’,r)} from a majority
 return v’ with the highest t’
Implementing a 1W1R register, contd.

Upon receive \([v,t]\)

if \(t > t_i\) then

\[v_i := v \]
\[t_i := t \]

send \([\text{ack},t]\) to the writer

Upon receive \([?,r]\)

send \([v_i,t_i,r]\) to the reader
Is the majority assumption crucial?

- The reader can miss the value if a preceding write

- Suppose there is a message-passing N-process consensus algorithm using Ω that tolerates $f\leq N/2$ failures
 - Different values can be decided
A majority must be correct

Any two decisions must involve at least one process in common (*decision quorums* must intersect)

If f failures are tolerated, then the (worst-case) decision quorums of size $N-f$ intersect in at least $N-2f$ processes $\Rightarrow f < \frac{N}{2}$
What if processes are malicious?

Any two decisions must involve at least one correct process in common.

Otherwise quorums may miss each other (a Byzantine process plays oblivious).

p_i decides v

p_j decides v'
More than two third must be correct!

If f failures are tolerated, then the decision quorums of size N-f intersect in at least N-2f processes

\[\Rightarrow N-2f > f + 1 \]
\[\Rightarrow f < \frac{N}{3} \]
There is more to this

- Renaming and adaptive algorithms
- Sub-consensus problems
- Non-uniform computing models
- Transactional memory
- Failure detection

Check http://www.net.t-labs.tu-berlin.de/~petr/ for more information