One-shot atomic snapshot (AS)

Each process p_i:
- $update_i(v_i)$
- $S_i := snapshot()$

Vectors S_i satisfy:
- **Self-inclusion**: for all i: v_i is in S_i
- **Containment**: for all i and j: S_i is subset of S_j or S_j is subset of S_i

“Unbalanced” snapshots

p_1 sees p_2 but misses its snapshot
- $update_1(1)$ ok
- $snapshot()$ [1,1,0]
- $update_2(1)$ ok
- $snapshot()$ [1,1,1]
- $update_3(1)$ ok
- $snapshot()$ [1,1,1]

Enumerating possible runs: two processes

Each process p_i ($i=1,2$):
- $update_i(v_i)$
- $S_i := snapshot()$

Three cases to consider:
- (a) p_1 reads before p_2 writes
- (b) p_2 reads before p_1 writes
- (c) p_1 and p_2 go “lock-step”: first both write, then both read
Topological representation of concurrency: two processes

Vertex: local state
Simplex (set of vertexes): global state
Simplicial complex: set of reachable global states

Topological representation: three processes

Initial state: a simplex

Topological representation: one-shot AS

Balanced run: two steps of \(p_2 \), then \(p_1 \), then \(p_3 \)

"unbalanced" run

Topological representation: one-shot AS
One-shot immediate snapshot (IS)

One operation:
WriteRead(v)

Each process p_i:
S_i := WriteRead(v_i)

Vectors S_1,...,S_N satisfy:
- **Self-inclusion**: for all i: v_i is in S_i
- **Containment**: for all i and j: S_i is subset of S_j or S_j is subset of S_i
- **Immediacy**: for all i and j: if v_i is in S_j, then S_i is a subset of S_j

“Unbalanced” run eliminated

WriteRead(v)

WriteRead(1)

WriteRead(1)

Every IS run is “balanced”

The runs of IS match the block runs of one-shot AS that can be written as:

B_1 B_2 ... B_k

where
- each B_i = update_{Π_i}() snapshot_{Π_i}()
 - All processes in Π_i update and then all processes in Π_i take
 snapshots
- Π_1,...,Π_k is a partition of {p_1,...,p_N}
 - E.g., Π_1={p_2}; Π_2={p_1}; Π_3={p_3} in the balanced run above

Topological representation: one-shot IS

A subdivision!
IS is equivalent to AS (one-shot)

- IS is a **restriction** of one-shot AS => IS is **stronger** than one-shot AS
 - Every run if IS is a run of one-shot AS
- Show that a few (one-shot) AS objects can be used to implements IS
 - One-shot ReadWrite() can be implemented using a series of update and snapshot operations

IS from AS

shared variables:

\[A_1, ..., A_N\] – atomic snapshot objects, initially [T, ..., T]

Upon WriteRead(v_i)

\[r := N+1\]

while true do

\[r := r - 1\] // drop to the lower level

\[A_r.update(v_i)\]

\[S := A_r.snapshot()\]

if |S| = r then // |S| is the number of non-T values in S

return S

Drop levels: two processes, N>3

<table>
<thead>
<tr>
<th>N</th>
<th></th>
<th></th>
<th>See < N</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-1</td>
<td></td>
<td></td>
<td>See < N-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See 1 or 2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>See 1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correctness

The outcome of the algorithm satisfies Self-Inclusion, Snapshot, and Immediacy

- By induction on N: for all N>1, if the algorithm is correct for N-1, then it is correct for N

- Base case N=1: trivial
Correctness, contd.

- Suppose the algorithm is correct for N-1 processes
- N processes come to level N
 - At most N-1 go to level N-1 or lower
 - (At least one process returns in level N)
 - Why?
- Self-inclusion, Containment and Immediacy hold for all processes that return in levels N-1 or lower
- The processes returning at level N return all N values
 - The properties hold for all N processes! Why?

Iterated Immediate Snapshot (IIS)

Shared variables:
IS₁, IS₂, IS₃,... // a series of one-shot IS

Each process \(p_i \) with input \(v_i \):
\[
\begin{align*}
 r &:= 0 \\
 \text{while true do} \\
 r &:= r+1 \\
 v_i &:= IS_r.WriteRead(v_i)
\end{align*}
\]
ISDS: two rounds of IIS

IIS is equivalent to (multi-shot) AS

- AS can be used to implement IIS (wait-free)
 - Multiple instances of the construction above (one per iteration)

- IIS can be used to implement multi-shot AS in the non-blocking manner:
 - At least one correct process performs infinitely many read or write operations
 - Good enough for protocols solving distributed tasks!

From IIS to AS

We simulate an execution of full-information protocol (FIP) in the AS model, i.e., each process p_i runs:

\[
\text{state} := \text{input value of } p_i \\
\text{repeat} \\
\text{update(state)} \\
\text{state} := \text{snapshot()} \\
\text{until undecided(state)}
\]

(state := input value of p_i repeat update(state) state := snapshot() until undecided(state)

(the input value and the decision procedure depend on the problem being solved)

If a problem is solvable in AS, it is solvable with FIP

From IIS to AS

Each process p_i maintains a vector clock $c[1,...,N]$

- Each $c[j]$ has two components:
 - $c[j].\text{clock}$: the number of updates of p_i “witnessed” by p_i
 - $c[j].\text{val}$: the most recent value of p_i’s vector clock “witnessed” by p_i

- To perform an update: increment $c[j].\text{clock}$ and set $c[j].\text{val}$ to be the “most recent” vector clock
- To take a snapshot: go through iterated memories until $|c| = \sum c[j].\text{clock}$ is “large enough”
• \(c \succeq c' \) iff for all \(j \), \(c[j].\text{clock} \geq c'[j].\text{clock} \) (\(c \) observes a more recent state than \(c' \))

• \(|c| = \Sigma c[j].\text{clock} \) (sum of clock values of the last seen values)

• For \(c = c[1], \ldots c[N] \) (vector of vectors \(c[j] \)), \(\text{top}(c) \) is the vector of most recent seen values:

\[
\begin{align*}
\text{c[1]} & = [(1,a) (3,b) (2,c)] \\
\text{c[2]} & = [(4,u) (2,v) (1,w)] \\
\text{c[3]} & = [(2,x) (1,y) (5,z)] \\
\text{top(c)} & = [(4,u) (3,b) (5,z)]
\end{align*}
\]

From IIS to AS: correctness

Let \(c \) denote the vector evaluated by an undecided process \(p_i \) in round \(r \) (after computing the top function)

Lemma 1 \(|c| \geq r \)

Proof sketch

\(c \succeq c_{r+1} \) (by the definition of top)

Initially \(|c_1| \geq 1 \) (each process writes \(c[1].\text{clock}=1 \) in IS\(_1\))

Inductively, suppose \(|c| \geq r \), for some round \(r \):

• If \(|c|=r \), then \(c', |c'|=r+1 \), is written in IS\(_{r+1}\)

• If \(|c|>r \), then \(c' \), such that \(c \succeq c', \) (and thus \(|c'| \geq |c| \)) is written in IS\(_{r+1}\)

In both cases, \(c_{r+1} \geq r+1 \)

From IIS to AS: non-blocking simulation

Shared: IS\(_1, IS_2, \ldots \) // an infinite sequence of one-shot IS memories

Local: at each process, \(c[1, \ldots N]=[(0,T), \ldots (0,T)] \)

Code for process \(p_i \):

\[
\begin{align*}
\text{r} & := 0; \ c[i].\text{clock} := 1; \ c[i].\text{val} := \text{input of } p_i \\
\text{return } \text{decision}(c.\text{val})
\end{align*}
\]

© 2012 P. Kuznetsov

From IIS to AS: correctness

Lemma 2 Let \(c \) and \(c' \) be the clock vectors evaluated by processes \(p_i \) and \(p_j \), resp., in round \(r \). Then \(|c| \leq |c'| \) implies \(c \succeq c' \)

Proof sketch

Let \(S_i \) and \(S_j \) be the outcomes of IS\(_i \) received by \(p_i \) and \(p_j \)

\(c = \text{top}(S_i) \) and \(c' = \text{top}(S_j) \)

Either \(S_i \) is a subset of \(S_j \) or \(S_j \) is a subset of \(S_i \) (the Containment property of IS)

Suppose \(S_i \) is a subset of \(S_j \), then for each clock value seen by \(p_i \) is also seen by \(p_j \)

\(=> |c| \leq |c'| \) and \(c \succeq c' \)

Why?

Corollary 1 (to Lemma 2) All processes that complete a snapshot operation in round \(r \) get the same clock vector \(c \) \(|c|=r \)

Corollary 2 (to Lemmas 1 and 2) If a process completes a snapshot operation in round \(r \) with clock vector \(c \), then for each clock vector \(c' \) evaluated in round \(r \) \(\geq r \), we have \(c \succeq c' \)

© 2012 P. Kuznetsov
From IIS to AS: linearization

Lemma 3 Every execution’s history is linearizable (with respect to the AS spec.)

Proof sketch
Linearization
- Order snapshots based on the rounds in which they complete
- Put each update(c) just before the first snapshot that contains c (if no such snapshot – remove)

By Corollaries 1 and 2, snapshots and updates in the order respect the specification of AS - legality

Both linearization points take place “within the interval” of k-th update and k-th snapshot of p - between k-th and (k+1)-th updates of c[i].val – precedence

From IIS to AS: liveness

Lemma 4 Some correct undecided process completes infinitely many snapshot operations (or every process decides).

Proof sketch
By Lemma 1, a correct process p does not complete its snapshot in round r only if |c_r| > r

Suppose p never completes its snapshot
=> c, keeps grows without bound and
=> some process p keeps updating its c[j]
=> some process p completes infinitely many snapshots

IIS=AS for wait-free task solutions

- Suppose we simulate a wait-free protocol for solving a task:
 - Every process starts with an input
 - Every process taking sufficiently many steps (of the full-information protocol) eventually decides (and thus stops writing new values, but keeps writing the last one)
 - Outputs match inputs (we’ll see later how it is defined)

- If a task can be solved in AS, then it can be solved in IIS
 - We consider IIS from this point on

Homework 4

4.1 Complete the proof of the one-shot IS algorithm
4.2 Would the algorithm be correct if we replace A_r.update_i(v_i) with U_i.write(v_i) and A_r.snapshot() with scan(U_i[1],...,U_i[N])?
4.3 Complete the proofs of Lemma 2 and Corollaries 1 and 2