FDS 12: Problem Set 4:
Immediate Snapshot and Iterated Immediate Snapshot

A (one-shot) immediate snapshot (IS) object exports one operation WriteRead\(_i\)(\(v\)) to every process \(p_i\) that takes a value as an argument and returns a vector \(S\) of \(N\) values, one value per process in response. In each run, IS ensures the following properties (here \(v_i\) denotes the value proposed by process \(p_i\) and \(S_i\) denotes the vector returned to \(p_i\) in that run):

- **Self-inclusion**: for all \(i\), \(v_i \in S_i\)
- **Containment**: for all \(i, j\): \(S_i \subseteq S_j \vee S_j \subseteq S_i\)
- **Immediacy**: for all \(i, j\): if \(v_i \in S_j\), then \(S_i \subseteq S_j\)

Exercise 4.1
Prove that the algorithm in slide 34 implements an IS (e.g., using the outline proposed in the slides).

Exercise 4.2
Would the algorithm be still correct if instead of \(A_r.\text{update}_i(\(v_i\))\) and \(S := A_r.\text{snapshot}()\) we use \(U_r[i].\text{write}(\(v_i\))\) and \(S := \text{scan}(U_r[1], \ldots, U_r[N])\) respectively, where \(U_r\) is a shared vector of \(N\) one-writer-\(N\)-reader atomic registers? Justify your judgement.

Exercise 4.3
Consider the simulation of (multiple-shot) AS in the iterated IS (IIS) model (slide 26 in Class 6). Complete the proofs of the following claims (e.g., using the outline proposed in the slides):

Lemma 2 Let \(c_r\) and \(c'_r\) be the clock vectors evaluated by processes \(p_i\) and \(p_j\), resp., in round \(r\). Then \(|c_r| \leq |c'_r|\) implies \(c_r \leq c'_r\).

Corollary 1 All processes that complete a snapshot operation in round \(r\), get the same clock vector \(c\), \(|c| = r\)

Corollary 2 If a process completes a snapshot operation in round \(r\) with clock vector \(c\), then for each clock vector \(c'\) evaluated in round \(r' \geq r\), we have \(c \leq c'\).