Organization

- Instructor: Florin Ciucu
 - Senior Research Scientist, INET Chair (Prof. A. Feldmann), Deutsche Telekom Laboratories / TU Berlin
 - Ph.D. in Computer Science, University of Virginia, 2007
 - M.Sc. in Computer Science, George Mason University, 2002
 - B.Sc. in Informatics, University of Bucharest, 1998
 - Research interests: stochastic models for network analysis, resource allocation, randomized algorithms

- Additional Instructor: Stefan Schmid
 - Senior Research Scientist, INET Chair (Prof. A. Feldmann), Deutsche Telekom Laboratories / TU Berlin
 - Dr. in Science, ETH Zurich, 2008
 - Diploma / M.Sc. in Computer Science, ETH Zurich, 2004
 - Research interests: Networks & Distributed Systems, Algorithms, Game Theory & Incentives, Virtualization
Time and Place
- Lecture: Thursdays 12:00 – 14:00
- Tutorial: Thursdays 14:00 – 16:00
- Room: FR 1067

• Prerequisites (desirable): algorithms, data structures, basic probability
 - Yes, the course involves math (proving that certain things work, and explaining why certain things are the way they are)
 - ... but the level of math is supposed to be for an audience with the primary background in Computer Science / Engineering

• Lectures
 - Focus on concepts, theoretical aspects, and examples
 - Material (algorithms, analysis) to be mostly presented on the black-board; some supporting slides to be handed-in before the lecture
 - Students must take notes

• Tutorials
 - Focus on additional examples, solutions for homeworks
Organization (contd.)

• Textbooks (cover partial material)
 – M.J. Neely. Stochastic Network Optimization with Application to Communication and Queueing Systems

• Homeworks
 – Assigned every week
 – To be handed in one week later during class
 – Late returns are possible (subject to “good” excuses)
 – To be graded by the instructor(s)
 – 50% of the points needed to pass the tutorial

• Final Exam
 – Written (2-3 hrs)
 – Contains problems closely related to HWs

• Updated Info at
 http://www.net.t-labs.tu-berlin.de/teaching/ss11/NOR_lecture/
Why Should You Take This Course?

• The course it’s about Computer and Communication Networks
 – Perhaps one of the greatest discoveries of the last century
 – Definitely part of the future

• The course it’s about algorithms, i.e., what Computer Scientists like to do anyway

• The course it’s about the use of probability in Computer Science
 – Not exactly what Computer Scientists like to do
 – ... But extremely useful to understand modern systems and design efficient algorithms

• The course will improve your ability to think abstractly
 – And to solve hard problems efficiently
What’s The Course About?

• Efficient Algorithms for Network Protocols
 – What does “efficient” mean? Fast? Reliable?
 – Why care? Improve networks’ performance (i.e., optimize)

• We look at a specific class of algorithms including a random (or probabilistic) component
 – More precisely: it makes random choices during execution
 – What does “random” mean? Unpredictable??? Hopefully not entirely... Let’s leave this concept vague for now...
What is an Algorithm Anyway?

• Intuitive but informal definition: a collection of simple instructions, to be executed in some order, for carrying out some specific task

• There is a problem with this definition
 – Cannot be used to prove that some tasks are algorithmically unsolvable (i.e., no algorithms exist)
 – E.g., Hilbert 10th problem: testing the existence of an integral root for a polynomial; and many others...

• Church-Turing thesis

 Intuitive notion = Turing machine

 of algorithms = algorithms

• Computability Theory – classify problems in solvable / not solvable

• Complexity Theory – classify problems in easy and hard
Why Randomness?

• What is it? Does it exist? (“The randomness is the unknown, and that the nature is determined in its fundamentals.”, Democritos)

• Hard time along history
 – Newton’s law: the universe is deterministic (a “big” computer would roughly predict the future, subject to some “exact” initial conditions)
 – Belief in determinism had emotional roots, as people connected randomness with chaos, uncertainty, and unpredictability, all related to fear (“There are only two possibilities, either a big chaos conquers the world, or order and law.”, M. Aurelius)

• (Scientific) acceptance as late as in the 20th century
 – Invention of modern Quantum Mechanics: the universe evolves according to laws, but the backbone of the laws is random
 – Confirmation of the ancient view of Epikurus (“The randomness is objective, it is the proper nature of events.”)

• Randomness is commonly regarded as an essential component to model the universe/nature, and for what we care computer and communication systems
Why Randomized Algorithms?

• **Efficiency**: execution time (or space requirement) can be much smaller than that of the best deterministic algorithm for some specific problems

• **Simplicity**: Much easier to understand and implement

• These gains come at a price
 – Correctness may be uncertain
 – Efficiency may be also uncertain
 – However, these uncertainties can be quantified mathematically (e.g., the probability of error is 2%)

• If the probability of error is “small enough” (or tolerable) then it’s worth paying the price
Network Areas Covered in This Class. Tentative

- Multiple Access Protocols
- Scheduling Algorithms (e.g., Backpressure)
- Flow and Congestion Control, Routing
- Resource Allocation
- Peer-to-Peer and Social Networks
- Online Algorithms
- Network Security
- Network Coding
- Network Reliability

- First few lectures focus on classical algorithms (e.g., sorting, selection) and topics (e.g., random number generators)
Back to (Efficient) Algorithms

• Recall Growth of Function (big-Oh, little-oh)

• Problem: Multiplication of two big numbers using only a piece of paper and a pencil
 – Naive
 – Classic
 – à la russe
 – Karatsuba

• Example: A randomized algorithm more efficient than any deterministic algorithm